Researchers find unique regulatory pattern that promotes essential cell function

April 21, 2016 by Lola Alapo

Scientists and clinicians often encounter road blocks in designing specific treatments for diseases like cancer or developmental disorders because proteins that regulate cell functions through complex mechanisms are misunderstood.

A researcher at the University of Tennessee, Knoxville, has discovered a novel aspect of a fundamental cellular process that could be a key to overcoming that barrier.

Maitreyi Das, an assistant professor in UT's Department of Biochemistry and Cellular and Molecular Biology, found that during cytokinesis—the final stage of cell division when the cell physically separates into two—a signaling protein known as Cdc42 is activated and triggers a series of processes within the cell.

Defects in the control of Cdc42 have been associated with cancer. Scientists have speculated that Cdc42 plays a role in final cell division but didn't know how until now. Das discovered that Cdc42 is activated in a unique pattern to regulate the cytokinesis process.

"The signaling protein acts like an internal clock that allows events to happen in the right order," she said.

The findings were recently published as a highlighted article in the journal Molecular Biology of the Cell.

Das, along with UT postdoctoral student Bin Wei and graduate student Brian Hercyk, studied the cell process using a model of fission yeast. The simple model provides scientists with a paradigm for similar studies in more complex organisms, she said.

"The findings advance our knowledge of a basic biological process," Das said.

To treat diseases such as cancer, researchers need to understand how a cancer cell behaves and what defects in that cell lead to the disease. Cell processes do not occur in an isolated way, Das said. Rather, they're connected to each other as part of a system.

"Understanding how something functions under normal conditions is the first step towards understanding the defects that lead to disease and designing a treatment for it," Das said. "Until we do that, we don't have a way to understand and other diseases."

Explore further: A single enzyme with the power of three could offer shortcut to therapeutic target

Related Stories

Yeast key to understanding cell division

July 16, 2015

A team of scientists has discovered that a protein in common baker's yeast helps control cell division – findings that may have implications for understanding diseases such as cancer. A protein called Yih1, for Yeast Homologue ...

New cell division mechanism discovered

July 13, 2015

Canadian and British researchers have discovered that chromosomes play an active role in animal cell division. This occurs at a precise stage - cytokinesis - when the cell splits into two new daughter cells. It was observed ...

Recommended for you

New discovery challenges long-held evolutionary theory

October 19, 2017

Monash scientists involved in one of the world's longest evolution experiments have debunked an established theory with a study that provides a 'high-resolution' view of the molecular details of adaptation.

Gene editing in the brain gets a major upgrade

October 19, 2017

Genome editing technologies have revolutionized biomedical science, providing a fast and easy way to modify genes. However, the technique allowing scientists to carryout the most precise edits, doesn't work in cells that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.