Researchers identify specific defects in LED diodes that lead to less efficient solid state lighting

April 6, 2016 by Sonia Fernandez, University of California - Santa Barbara
A conceptual illustration of how defects in a crystal lattice might contribute to nonradiative recombination of electrons and holes in LEDs. Credit: Peter Allen

Using state-of-the-art theoretical methods, UCSB researchers have identified a specific type of defect in the atomic structure of a light-emitting diode (LED) that results in less efficient performance. The characterization of these point defects could result in the fabrication of even more efficient, longer lasting LED lighting.

"Techniques are available to assess whether such defects are present in the LED materials and they can be used to improve the quality of the material," said materials professor Chris Van de Walle, whose research group carried out the work.

In the world of high-efficiency solid-state lighting, not all LEDs are alike. As the technology is utilized in a more diverse array of applications—including search and rescue, water purification and safety illumination, in addition to their many residential, industrial and decorative uses—reliability and efficiency are top priorities. Performance, in turn, is heavily reliant on the quality of the semiconductor material at the atomic level.

"In an LED, electrons are injected from one side, holes from the other," explained Van de Walle. As they travel across the crystal lattice of the semiconductor—in this case gallium-nitride-based material—the meeting of electrons and holes (the absence of electrons) is what is responsible for the light that is emitted by the diode: As electron meets hole, it transitions to a lower state of energy, releasing a photon along the way.

Occasionally, however, the charge carriers meet and do not emit light, resulting in the so-called Shockley-Read-Hall (SRH) recombination. According to the researchers, the are captured at defects in the lattice where they combine, but without emitting light.

The defects identified involve complexes of gallium vacancies with oxygen and hydrogen. "These defects had been previously observed in nitride semiconductors, but until now, their detrimental effects were not understood," explained lead author Cyrus Dreyer, who performed many of the calculations on the paper.

"It was the combination of the intuition that we have developed over many years of studying with these new theoretical capabilities that enabled this breakthrough," said Van de Walle, who credits co-author Audrius Alkauskas with the development of a theoretical formalism necessary to calculate the rate at which defects capture electrons and holes.

The method lends itself to future work identifying other defects and mechanisms by which SRH recombination occurs, said Van de Walle.

"These gallium vacancy complexes are surely not the only defects that are detrimental," he said. "Now that we have the methodology in place, we are actively investigating other potential to assess their impact on nonradiative recombination."

The paper has been published as a Featured Article in the April 4 issue of Applied Physics Letters [APL 108, 141101 (2016)], with an accompanying figure on the cover of the journal.

Explore further: Building blocks for GaN power switches

More information: Cyrus E. Dreyer et al. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters, Applied Physics Letters (2016). DOI: 10.1063/1.4942674

Related Stories

Building blocks for GaN power switches

December 15, 2015

A team of engineers from Cornell University, the University of Notre Dame and the semiconductor company IQE has created gallium nitride (GaN) power diodes capable of serving as the building blocks for future GaN power switches—with ...

LED efficiency puzzle solved by theorists

April 19, 2011

Researchers at the University of California, Santa Barbara, say they've figured out the cause of a problem that's made light-emitting diodes (LEDs) impractical for general lighting purposes. Their work will help engineers ...

Team theorizes defects could improve solar cells

January 19, 2016

Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) are studying what may seem paradoxical - certain defects in silicon solar cells may actually improve their performance.

Graphene decharging and molecular shielding

February 8, 2016

A new joint theoretical and experimental study suggests that graphene sheets efficiently shield chemical interactions. One of the promising applications of this phenomenon is associated with improving the quality of 2D materials ...

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.