Breaking metamaterial symmetry with reflected light

April 5, 2016, American Institute of Physics
This gold metamaterial nanostructure is a nanoscale version of the structure described by the University of Southampton researchers in Applied Physics Letters, and it exhibits large specular optical activity for oblique incidence illumination with light (rather than specular optical activity for microwaves). Credit: Eric Plum, Vassili A. Fedotov, and Nikolay I. Zheludev

Optical activity—rotation of the polarization of light—is well known to occur within materials that differ from their mirror image. But what happens if this symmetry is broken by the direction of illumination rather than the material itself?

Curiosity about this question has led to the discovery of a new type of . As a group of University of Southampton researchers report in Applied Physics Letters, breaking the symmetry of metamaterials with reflected light will enable novel applications because it causes optical activity of unprecedented magnitude—far exceeding previously known specular or "mirror-like" optical activity.

At the heart of the group's work are metamaterials— constructed with unique shapes and symmetries that generate properties which don't occur in their natural counterparts.

"Natural materials derive their properties from the atoms, ions, or molecules they consist of. Similarly, the basic concept behind metamaterials is to assemble artificial materials from 'metamolecules,' which are manmade elementary building blocks," explained Eric Plum, a research lecturer at the University of Southampton's Optoelectronics Research Centre and Centre for Photonic Metamaterials.

"This provides a huge technological opportunity," Plum pointed out. "Instead of being limited by available , we can design materials with the properties we want. This has already led to the demonstration of various enhanced and novel material properties and functionalities."

Metamaterials appear homogenous to electromagnetic waves because their artificial structure is of subwavelength size—metamaterials for light are structured on the nanoscale, while those for microwaves are structured on the scale of millimeters or centimeters.

The group is interested in the twisted, or "chiral," structures found within many natural and because they come with the ability to rotate the polarization state of transmitted light—a property known as optical activity. This property is the basis for applications ranging from LCD displays to spectroscopy, and even detection of life during space missions.

While the optical activity for light reflected by natural materials is negligible, the researchers found that the same isn't at all true for metamaterials.

"Our metamaterial exhibits huge optical activity for reflected ," Plum said. "This is particularly remarkable considering that our artificial structure is extremely thin—30 times thinner than the wavelength of the electromagnetic radiation it manipulates."

Perhaps just as surprising, the optically active material involved isn't actually chiral. "Instead, optical activity arises from a chiral experimental arrangement associated with the mutual orientation of the direction of the illumination and the structure of the metamaterial, which lacks two-fold rotational symmetry," he elaborated.

The group's discovery paves the way for "a whole new class of extremely thin and light devices for controlling and detecting the polarization of light, such as polarization rotating and circularly polarizing beam splitters and mirrors, as well as optical isolators for circularly polarized light," Plum said.

In terms of more fundamental implications, the group's observed effect mimics the longitudinal magneto-optical Kerr effect—in which the light reflected from a magnetized surface can change in both reflected intensity and polarity - without a magnetized medium.

"This has significant implications for Kerr microscopy, because it could be mistaken for magnetization," he added.

Plum and colleagues are now busy developing practical solutions to enable dynamic control of specular optical activity for applications such as active polarization modulation.

"It would also be interesting to study the effect in natural materials and to explore the consequences of similar types of 'symmetry breaking' of other physical systems," Plum said.

Explore further: Electrical signals dictate optical properties

More information: "Specular optical activity of achiral metasurfaces," by Eric Plum, Vassili A. Fedotov and Nikolay I. Zheludev, Applied Physics Letters April 5, 2016 , DOI: 10.1063/1.4944775

Related Stories

Electrical signals dictate optical properties

March 19, 2013

Researchers at the University of Southampton's Optoelectronics Research Centre (ORC) have created an artificial material, a metamaterial, with optical properties that can be controlled by electric signals.

New optical materials break digital connectivity barriers

March 18, 2015

From computers, tablets, and smartphones to cars, homes, and public transportation, our world is more digitally connected every day. The technology required to support the exchange of massive quantities of data is critical. ...

Recommended for you

A quantum magnet with a topological twist

February 22, 2019

Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons ...

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.