Metal organic framework materials enable highly sensitive fiber sensor for real-time detection of water contaminants

April 6, 2016, Optical Society of America
Metal organic framework materials enable highly sensitive fiber sensor for real-time detection of water contaminants
Figure 1: A schematic illustration describing the encapsulation of 5-FU into the UiO-66 MOF thin film optical fiber and its release upon switching on the light at the other end of the optical fiber

Trace contaminants in water are often measured by taking samples from the environment to a lab for analysis, which can lead to inaccurate results due to delayed and irregular sample collection or long-transportation and handling times. Thus, techniques enabling in-situ or real-time measurements of water contaminants are no doubt one of the major steps towards effective control of water quality.

Optical fiber chemical sensors based on optical absorption feature high specificity, fast response, and a much longer lifetime compared to other chemical sensors, qualities that offer significant potential for application in pollution monitoring, environmental protection, and hazardous-material detection. Now by integrating (MOF) materials—a new class of highly porous crystalline material—with optical fibers, researchers from Victoria University and Monash University, Australia, have co-developed a novel, highly sensitive based on an coated with a thin film of a specific MOF (namely, UiO-66), which could be potentially used for real-time detection of heavy organic contaminants such as herbicides or pesticides in water. In a paper published this week in the journal Optics Letters, from The Optical Society (OSA), the researchers described their work.

"Metal organic frameworks (MOFs) are networks of metal atoms linked and separated by carbon-based (organic) compounds. The UiO-66 MOF we used in the experiment is made from Zirconium and is well known for the stability in water," said Stephen Collins, professor of engineering, Victoria University, Australia. "We have demonstrated for the first time that the advanced porous material MOFs can be coated onto the end-face of optical fibers to create a novel, faster and more sensitive chemical sensor potentially used for measuring heavy organic contaminants on site and in real-time."

Collins said various porous adsorbents such as pyrene-labeled monomer, silica sol-gel and zeolites have been studied recently by scientists for detecting hazardous compounds. However, the low porosity and small pores of the above adsorbents limit their use in the sensing area to small molecules. That is, they cannot detect larger or heavy organic molecules (e.g. herbicides or pesticides) in water.

Metal organic frameworks are about 10 times more porous than any material previously known, so they can absorb larger molecules. MOFs form as crystals and careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability.

To fabricate the MOF-fiber sensor, the researchers removed the polymer coating of a conventional single mode fiber several centimeters from the end and activated the fiber surface using plasma. Then, the fiber was placed in MOF liquid solution and heated at 120 degrees Celsius for 24 hours, which allowed the activated fiber surface to attract the MOF to grow on the end-face of the fiber, resulting in a MOF thin film of 17- to 22-micrometer thickness.

Collins explained that the MOF-fiber sensor can be used as an in-fiber Fabry-Perot interferometer, which is a well-established method for detecting the "optical thickness" of a thin film by studying the interference signals generated by the film interfaces. As the MOF-fiber sensor absorbs more and more contaminants, the optical thickness of the MOF thin film increases accordingly, leading to a change in the interference spectra. By using the established optical model and mathematical procedure, the researchers can calculate the optical thickness of the MOF thin film from the experimentally measured interference spectra, and hence infer the concentration of contaminants in water.

In the experiment, Collin's team used the MOF-fiber sensor to detect a specific contaminant in water called Rhodamine-B (RhB) dye, a bright pink dye known as Opera Rose, which is used in the textile industry and is known to be potentially carcinogenic if ingested.

"Our experimental results showed a positive detection response of the MOF-fiber sensor to RhB in water down to 48 parts per million or 0.1 millimolar, which is a very promising result, demonstrating the sensor's ability to detect pollutants at a low concentration before the pollution goes worse," said Collins.

He explained the high sensitivity and fast response of the MOF-fiber sensor are attributed to the MOF's ability to pre-concentrate molecules, which can be imaged as a sponge "soaking" up molecules into its pores. Additionally, the MOF sponge selectively absorbs molecules to fit into its pores and rejects unfit ones, which enhance the sensor's sensitivity and reliability.

The researchers also found the sensor's absorption process of RhB dye is non-reversible, which is ideal for long-term monitoring where RhB concentrations are minimal and a marked increase in the dye's concentration would be recognized easily, said Collins.

"While the non-reversible mode suits many applications, we have also developed methods of releasing absorbed molecules by shining light down the fiber, which would make the sensor re-usable," Collin said.

The researchers' next step is to further explore the MOF-fiber sensor's responses to other heavy organic contaminants such as pesticides and herbicides in water.

Explore further: Don't call them stiff: Metal organic frameworks show unexpected flexibility

More information: M. Nazari, M. Forouzandeh, C. Divarathne, F. Sidiroglou, M. Martinez, K. Konstas, B. Muir, A. Hill, M. Duke, M. Hill and S. Collins. "UiO-66 MOF End-Face-Coated Optical Fiber in Aqueous Contaminant Detection" Optics Letters 41, 1696 – 1699. DOI: 10.1364/OL.41.001696

Related Stories

Free pores for molecule transport

July 31, 2014

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many MOFs is inhibited ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.