Mathematicians propose model for the dynamics of the chameleon tongue

April 20, 2016 by Bob Yirka report
Oustalet's Chameleon, Ambalavao, Madagascar. Credit: Bernard Gagnon/Wikipedia.

(Phys.org)—A small team of mathematicians with Oxford University and an engineer with Tufts University has together proposed a model to explain the dynamics of the chameleon tongue. In their paper published in Proceedings of the Royal Society A, the team describes their study of chameleon tongues, their findings and a description of the math used to model the sequence of events that lead up to a very fast tongue strike.

The chameleon tongue strike is well documented, most people have seen examples of it in action in nature documentaries—generally in slow motion. What sets it apart is its speed—a chameleon can push its tongue out at a target at speeds up to 100 kilometers per hour. But how it does so, has not been well understood. In this new effort, the researchers have found that in order to reach such incredible speeds so quickly, the chameleon relies on three main parts: the sticky pad that is situated on the end of its tongue which adheres to prey, coils of acceleration muscles and retractor muscles that pull prey back in before they have a chance to escape. They also note that both types of muscles coil around a tiny bone in the mouth—the hyoid. In order for a to catch prey, all of its systems must work in near perfect unison.

It all starts, the researchers report, with the accelerator muscles contracting, which squeezes tube shaped segments inside of the tongue, pushing them to the far end in what they team calls a loaded position. As the accelerator muscles contract, the tongue is forced outward while at the same time, the tube shaped segments are pushed outwards telescopically, like an old fashioned car radio antenna. The sheets are made of collagen which is of course very elastic, which means they are stretched out as the tongue is pushed away from the mouth, but then naturally recoil once the target has been reached. Retraction is assisted by retractor muscles.

The researchers have put all these actions into a mathematical model which allows them to manipulate various factors, such as how big around the sheets can be. They noted that such changes to the system could be destructive—if the radius of the inner sheath was more than 1.4 millimeters, they found, the tongue would rip loose from its base as it was launched causing the loss of the .

The video will load shortly

Explore further: Why chameleon tongues work in the cold (w/ Video)

More information: Derek E. Moulton et al. The elastic secrets of the chameleon tongue, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science (2016). DOI: 10.1098/rspa.2016.0030

Abstract
The ballistic projection of the chameleon tongue is an extreme example of quick energy release in the animal kingdom. It relies on a complicated physiological structure and an elaborate balance between tissue elasticity, collagen fibre anisotropy, active muscular contraction, stress release and geometry. A general biophysical model for the dynamics of the chameleon tongue based on large deformation elasticity is proposed. The model involves three distinct coupled subsystems: the energetics of the intralingual sheaths, the mechanics of the activating accelerator muscle and the dynamics of tongue extension. Together, these three systems elucidate the key physical principles of prey-catching among chameleonides.

Related Stories

Why chameleon tongues work in the cold (w/ Video)

March 10, 2010

(PhysOrg.com) -- In cold weather a chameleon’s metabolism slows down, but its tongue continues to work quickly to capture prey. A new study has found out why: the tongue does not rely on direct muscle contractions, and ...

Tiniest chameleons deliver most powerful tongue-lashings

January 4, 2016

Chameleons are known for sticking their tongues out at the world fast and far, but until a new study by Brown University biologist Christopher Anderson, the true extent of this awesome capability had been largely overlooked. ...

Chameleon's ballistic tongue inspires robotic manipulators

April 5, 2011

(PhysOrg.com) -- Although the lungless salamander and some frog species have developed ballistic tongues, the chameleon's ballistic tongue is the fastest, the longest, and the one that can catch the heaviest prey. A chameleon’s ...

Bat species found to have tongue pump to pull in nectar

September 28, 2015

(Phys.org)—A trio of researchers affiliated with the University of Ulm in Germany and the Smithsonian Tropical Research Institute in Panama has found that one species of bat has a method of collecting nectar that has never ...

How frog tongues are like commercial dry adhesives

October 1, 2015

Scientists from the Functional Morphology and Biomechanics research group at Kiel University have shown, for the first time, what happens when a frog's tongue makes contact with a surface. They discovered similarities to ...

What salamanders can teach us about baseball

November 18, 2015

If a baseball player waits until he sees the ball arrive in front of him to swing his bat, he will miss miserably. By the time the batter sees the ball's position, plans his swing and moves the bat, the ball will be firmly ...

Recommended for you

UN says world population will reach 9.8 billion in 2050

June 22, 2017

India's population is expected to surpass China's in about seven years and Nigeria is projected to overtake the United States and become the third most populous country in the world shortly before 2050, a U.N. report said ...

The story of music is the story of humans

June 20, 2017

How did music begin? Did our early ancestors first start by beating things together to create rhythm, or use their voices to sing? What types of instruments did they use? Has music always been important in human society, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.