Laser technique promises super-fast and super-secure quantum cryptography

April 5, 2016
Laser technique promises super-fast and super-secure quantum cryptography
Depiction of indistinguishable photons leaving through the same output port of a beam splitter. Credit: Lucian Comandar

A new method of implementing an 'unbreakable' quantum cryptographic system is able to transmit information at rates more than ten times faster than previous attempts.

Researchers have developed a new method to overcome one of the main issues in implementing a quantum cryptography system, raising the prospect of a useable 'unbreakable' method for sending sensitive information hidden inside particles of light.

By 'seeding' one inside another, the researchers, from the University of Cambridge and Toshiba Research Europe, have demonstrated that it is possible to distribute encryption keys at rates between two and six orders of magnitude higher than earlier attempts at a real-world quantum cryptography system. The results are reported in the journal Nature Photonics.

Encryption is a vital part of modern life, enabling to be shared securely. In conventional cryptography, the sender and receiver of a particular piece of information decide the encryption code, or key, up front, so that only those with the key can decrypt the information. But as computers get faster and more powerful, encryption codes get easier to break.

Quantum cryptography promises 'unbreakable' security by hiding information in particles of light, or photons, emitted from lasers. In this form of cryptography, are used to randomly generate a key. The sender, who is normally designated as Alice, sends the key via polarised photons, which are sent in different directions. The receiver, normally designated as Bob, uses photon detectors to measure which direction the photons are polarised, and the detectors translate the photons into bits, which, assuming Bob has used the correct photon detectors in the correct order, will give him the key.

The strength of quantum cryptography is that if an attacker tries to intercept Alice and Bob's message, the key itself changes, due to the properties of quantum mechanics. Since it was first proposed in the 1980s, quantum cryptography has promised the possibility of unbreakable security. "In theory, the attacker could have all of the power possible under the laws of physics, but they still wouldn't be able to crack the code," said the paper's first author Lucian Comandar, a PhD student at Cambridge's Department of Engineering and Toshiba's Cambridge Research Laboratory.

However, issues with quantum cryptography arise when trying to construct a useable system. In reality, it is a back and forth game: inventive attacks targeting different components of the system are constantly being developed, and countermeasures to foil attacks are constantly being developed in response.

The components that are most frequently attacked by hackers are the , due to their high sensitivity and complex design – it is usually the most complex components that are the most vulnerable. As a response to attacks on the detectors, researchers developed a new quantum cryptography protocol known as measurement-device-independent (MDI-QKD).

In this method, instead of each having a detector, Alice and Bob send their photons to a central node, referred to as Charlie. Charlie lets the photons pass through a and measures them. The results can disclose the correlation between the bits, but not disclose their values, which remain secret. In this set-up, even if Charlie tries to cheat, the information will remain secure.

MDI-QKD has been experimentally demonstrated, but the rates at which information can be sent are too slow for real-world application, mostly due to the difficulty in creating indistinguishable particles from different lasers. To make it work, the laser pulses sent through Charlie's beam splitter need to be (relatively) long, restricting rates to a few hundred bits per second (bps) or less.

The method developed by the Cambridge researchers overcomes the problem by using a technique known as pulsed laser seeding, in which one laser beam injects into another. This makes the laser pulses more visible to Charlie by reducing the amount of 'time jitter' in the pulses, so that much shorter pulses can be used. Pulsed laser seeding is also able to randomly change the phase of the laser beam at very high rates. The result of using this technique in a MDI-QKD setup would enable rates as high as 1 megabit per second, representing an improvement of two to six orders of magnitude over previous efforts.

"This protocol gives us the highest possible degree of security at very high clock rates," said Comandar. "It could point the way to a practical implementation of ."

Explore further: New approach uses 'twisted light' to increase efficiency of quantum cryptography systems

More information: L. C. Comandar et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers, Nature Photonics (2016). DOI: 10.1038/nphoton.2016.50

Related Stories

Quantum eavesdropper steals quantum keys

June 20, 2011

(PhysOrg.com) -- In quantum cryptography, scientists use quantum mechanical effects to encrypt and then communicate confidential information. Although quantum cryptography codes are unbreakable in principle, even the best ...

Three 'twisted' photons in 3 dimensions

February 29, 2016

Researchers at the Institute of Quantum Optics and Quantum Information, the University of Vienna, and the Universitat Autonoma de Barcelona have achieved a new milestone in quantum physics: they were able to entangle three ...

Particles in love—quantum mechanics explored in new study

February 15, 2016

Here's a love story at the smallest scales imaginable: particles of light. It is possible to have particles that are so intimately linked that a change to one affects the other, even when they are separated at a distance.

Recommended for you

New type of electron lens for next-generation colliders

October 18, 2017

Sending bunches of protons speeding around a circular particle collider to meet at one specific point is no easy feat. Many different collider components work keep proton beams on course—and to keep them from becoming unruly.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
not rated yet Apr 05, 2016
The sender, who is normally designated as Alice, sends the key via polarised photons...

That should probably read "photons that had their polarisation property entangled". Simply sending polarized photons isn't secure.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.