Diet affects the evolution of birds

April 13, 2016, University of Amsterdam
Diet affects the evolution of birds
Credit: João Quental

How diet has affected the evolution of the 10,000 bird species in the world is still a mystery to evolutionary biology. A study by Daniel Kissling of the Institute for Biodiversity and Ecosystem Dynamics (UvA) and colleagues from the University of São Paulo and the University of Utah shows how diet preferences have influenced bird diversification over millions of years. The findings were published in Nature Communications.

Since the seminal work by Charles Darwin, it is know that dietary habits of birds can affect the evolution of species, such as the beak sizes of Galapagos finches. However, birds show an astonishing diversity of species and dietary adaptations, ranging from very small nectar-feeding hummingbirds to large carnivorous eagles. How such diverse dietary preferences ultimately lead to differences in diversification dynamics (i.e. the balance between speciation and extinction) of different birds has not yet been examined.

Diet dataset

The researchers compiled an impressive diet dataset of almost all in the world together with a large phylogenetic tree that represent the relatedness of all bird species. Using models of trait-dependent diversification, they then showed that omnivorous bird lineages (with species that feed on many different food items) have lower rates of speciation (i.e. generating less new species) and higher rates of extinction (i.e. losing more existing species) than species which prefer specific food items such as fruits, nectar, or insects. Furthermore, the researchers also found that over deep evolutionary time birds which are specialized on a particular food item often add other to their diets, resulting in evolving transitions into omnivory.

Surprised

'I was really surprised to find that omnivores preferentially originate via transitions, and not through speciation', says lead author and PhD student Gustavo Burin from the University of São Paulo. Together with the low speciation rates and high extinction rates, these high transition rates indicate that omnivores originate from more specialized birds that expand their diets, rather than directly through speciation of omnivorous bird clades. 'We suggest that this is caused by resource competition, climate instability, and deep-time availability of food resources', says Burin. High transition rates towards omnivory may arise in times when food is harder to find or when it is temporally unavailable.

Human activities

Expanding these findings to the current human-driven changes on our planet the researchers expect that shifts in competitive dynamics between generalists and specialists will occur. 'Human activities such as habitat destruction and other global change drivers eliminate the resources of many specialist ', says Daniel Kissling from University of Amsterdam. This means that specialists are currently at higher risk of extinction than generalists. 'This will dramatically change the ecology and evolution of life on Earth because generalists are now favoured at the expense of specialists', explains Kissling. Ultimately, this will affect the functioning of ecosystems and the services that nature provides to humanity.

Explore further: Darwin's finches have reached their limits on the Galapagos

More information: Gustavo Burin et al. Omnivory in birds is a macroevolutionary sink, Nature Communications (2016). DOI: 10.1038/ncomms11250

Related Stories

Darwin's finches have reached their limits on the Galapagos

June 23, 2015

The evolution of birds on the Galápagos Islands, the cradle of Darwin's theory of evolution, is a two-speed process. Most bird species are still diversifying, while the famous Darwin's finches have already reached an equilibrium, ...

Faster evolution not responsible for tropical biodiversity

May 27, 2015

It's been known for more than 150 years that the tropics are home to far greater numbers of animal and plant species than the planet's temperate regions. But despite decades of study, the causes of this striking biodiversity ...

The role of species competition in biodiversity

July 7, 2015

(Phys.org)—Over long spans, biodiversity is a fluid and shifting balance of species and influences. Species diversification occurs in response to a host of complex factors, both biotic and abiotic, and understanding them ...

Poisonous frogs more likely to face extinction, study finds

October 19, 2015

Scientists at the University of Liverpool have found that amphibians that use toxins to protect themselves against predators are at a higher risk of extinction than those who use other types of defence, which poses a challenge ...

Darwin 2.0: Scientists shed new light on how species diverge

November 20, 2014

Birds that are related, such as Darwin's finches, but that vary in beak size and behavior specially evolved to their habitat are examples of a process called speciation. It has long been thought that dramatic changes in a ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...

Hot weather is bad news for bird sperm

January 19, 2018

A new study led by Macquarie University and spanning Sydney and Oslo has shown that exposure to extreme temperatures, such as those experienced during heatwave conditions, significantly reduces sperm quality in zebra finches, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.