

Making and breaking passwords

March 24 2016, by Mihai Lazarescu, Sciencenetwork Wa

Credit: AI-generated image (disclaimer)

The issue of choosing a good password is still key for cyber security
because users tend to pick passwords that are easy to remember rather
than secure. So what are the key attributes of a good password?

First, one needs to consider the length. The longer the password (or
rather passphrase), the more difficult it is to crack it.

1/5

https://sciencex.com/help/ai-disclaimer/

Why? Because when hackers try to crack passwords, they cannot tell
how close they are to guessing it.

For example, a hacker cannot tell if they managed to get 10 out of 12
characters right. There are only two outcomes from each try—it either
works or it does not.

Ideally, when creating a password someone would select four or five
words and combine them to form a strong password.

For example, if one likes Star Wars, they can use the character names to
build a strong password: LukeSkywalkerDarthVaderDarthSidious
(length=35).

Second, one needs to have largest characters set possible if they can only
have a limited password length.

If you restrict your set to only letter and digits you already reduce the
complexity of the password.

Ideally, you should use letters (upper and lower case), digits, special
characters (such as ^ or }), punctuation signs and the commonly
overlooked empty space.

Why do this? Because most password cracking tools using dictionaries
and variations of words (such big, biG, Big, Big1, Big11 and so on)
rarely check for variations such as big{}8==.

2/5

https://phys.org/tags/hackers/
https://phys.org/tags/passwords/

There is always a chance that someone will try to brute force check all
combination of characters (including special characters and punctuation
signs) but the time it takes to go through all the combinations makes it
less likely that they will crack it before you change your password again.

Third, the frequency with which the password is changed is critical. If
the length of the password is short (say 12-16), then you want to change
it more frequently.

So what if one needs to have passwords for multiple accounts? Assuming
that length is not an issue, use a passphrase and change one word that
would be easy associate with the account.

For example, using the base passphrase

3/5

LukeSkyWalkerDarthVaderDarthMaul, one can specialise it for two
accounts say office LukeSkyWalkerOfficeDarthVaderDarthMaul and
banking LukeSkyWalkerDarthVaderBankingDarthMaul.

All of this effort is designed to make it as difficult as possible for
hackers to crack passwords, so how do hackers actually crack
passwords?

On most systems, passwords are stored as hashes—the hash is generated
in most cases using a well-known cryptographic hash function which
maps the input data sequence of any length into a finite data sequence.

The cryptographic hash function is irreversible meaning that the input
sequence cannot be rebuilt from the hash.

The problem is that the hashes generated are not necessarily unique for
each input sequence—two different input sequences may have
(depending on the hash function) the same hash and it is this weakness
that the hackers target.

The actual password cracking process is effectively finding an input
sequence that has the same hash as the target password.

To crack the password, the hackers use automated tools and to speed up
the search, hackers will also use dictionaries and hash tables.

Most people will invariably set their password based on something
meaningful and thus words (and their variations) are prime candidates to
be tried.

Hash tables help significantly when the hacker has obtained a list of
hashes and is dealing with "unsalted" passwords as the processing
associated with generating the hashes has already been done.

4/5

Some operating systems such as MS Windows use "unsalted" passwords
and thus hash tables can be used.

Other operating systems such as Linux try to make the process of
password cracking more time consuming by adding another string called
a "salt" to the password before generating the hash.

For example, if the unsalted password is LuzernGenevaBaselZurich then
that phrase would be converted via a hash function.

However, if the password is salted, then a "salt" string is added to the
start or end of the password and then the hashing is carried out.

So if the salt is 18967802 then the computer stores the password as the
hash of 18967802LuzernGenevaBaselZurich.

The benefit of using a "salt" is that it renders hash tables useless and
makes the guessing process a lot more time consuming and difficult for
hackers.

This article first appeared on ScienceNetwork Western Australia a
science news website based at Scitech.

Provided by Science Network WA

Citation: Making and breaking passwords (2016, March 24) retrieved 18 April 2024 from
https://phys.org/news/2016-03-passwords.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://www.sciencewa.net.au/
https://phys.org/news/2016-03-passwords.html
http://www.tcpdf.org

