MIPT's scientists develop Russia's first two-qubit quantum circuit

March 29, 2016, Moscow Institute of Physics and Technology
Credit: Image provided by the research team

A research group from MIPT's Artificial Quantum System Lab and Collective Use Center developed and tested Russia's first superconducting, two-qubit, feedback-controlled circuit, an upgrade to qubits, the main components of future quantum computers, developed by MIPT scientists in 2015.

Modern computing components can only store one data bit at a time—1 or 0. Qubits, as quantum objects existing in a superposition of two states, have the potential to store both. Moreover, they serve as an example of quantum entanglement, offering game-changing techniques for data processing. A computer made of thousands of has the capacity to surpass the most powerful supercomputers in a large number of computing tasks such as cryptography, artificial intelligence and optimisation of complex systems.

A year ago, a research group developed Russia's first qubit along with a parameter measuring circuit. The two-qubit circuit is currently being developed and tested by Russian scientists from MIPT. "In the past 6 months, MIPT's lab has done substantial and laborious work to organise the measuring process of superconducting qubits. Arguably, MIPT currently has the necessary infrastructure and human capacity to deliver on building advanced qubit systems," says Alexey Dmitriyev, a postgraduate at AQS.

Dmitry Negrov, Deputy Head at the Collective Use Center, says, "We now are at the stage where system parameters are close to the designed conditions. The next step is to take vital measurements, such as coherence time, and refine the qubit bonding. We aim to continue our work on these parameters in the future".

According to Andrey Baturin, Head of Scientific Management at MIPT, quantum technology research is one of the long-term priorities on the institute's research agenda. "The Artificial Quantum System Lab and Collective Use Center succeeded in obtaining unique equipment—modern lithographic machines and evaporation units for full-cycle production of qubits and, later, qubit systems; measuring equipment and ultra-low temperature cryostats that allow us to work with qubits at the milli-Kelvin temperature range. Such low temperatures are essential due to the extreme fragility of quantum states that can easily fail from interaction with the outside environment," says Baturin.

The development of two-qubit circuits is an important achievement that allows further field research and raises Russia's stance in the global computing race.

Explore further: Semiconductor-inspired superconducting quantum computing devices

Related Stories

Team takes giant step forward in generating optical qubits

March 11, 2016

An optical chip developed at INRS by Prof. Roberto Morandotti's team overcomes a number of obstacles in the development of quantum computers, which are expected to revolutionize information processing. An international research ...

Physicists demonstrate a quantum Fredkin gate

March 25, 2016

Researchers from Griffith University and the University of Queensland have overcome one of the key challenges to quantum computing by simplifying a complex quantum logic operation. They demonstrated this by experimentally ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.