Microfluidic devices gently rotate small organisms and cells

March 23, 2016
Microfluidic devices gently rotate small organisms and cells
The design and operation of the acoustofluidic rotational manipulation device. (a) A schematic of the experimental setup. The piezoelectric transducer that generates acoustic waves is placed adjacent to the microfluidic channel. The acoustic waves actuate air microbubbles trapped within sidewall microcavities. (b) An optical image showing a mid-L4 stage C. elegans trapped by multiple oscillating microbubbles. Scale bar = 100 micrometers. Credit: Tony Huang, Penn State

A method to rotate single particles, cells or organisms using acoustic waves in a microfluidic device will allow researchers to take three dimensional images with only a cell phone. Acoustic waves can move and position biological specimens along the x, y and z axes, but for the first time researchers at Penn State have used them to gently and safely rotate samples, a crucial capability in single-cell analysis, drug discovery and organism studies.

The research, published today in Nature Communications, was led by Tony Jun Huang, professor of and mechanics and Huck Distinguished Chair in Bioengineering Science. Huang and his group created an acoustofluidic rotational manipulation (ARM) method that traps bubbles in a series of small cavities inside a . Acoustic transducers similar to ultrasound imaging transducers create an acoustic wave in the fluid, making the bubbles vibrate, which creates microvortexes in the flowing liquid that are tunable so the sample rotates in any direction and at any desired speed.

"Currently confocal microscopes are required in many biological, biochemical and biomedical studies, but many labs do not have access to a confocal microscope, which costs more than $200,000," said Huang. "Our ARM method is a very inexpensive platform and it is compatible with all the optical characterization tools. You can literally use a to do three-dimensional imaging."

To demonstrate the device's capabilities, the researchers rotated C. elegans, a model organism about a millimeter in length frequently used in biological studies. They also acoustically rotated and imaged a HeLa cancer cell.

Existing methods of manipulating small objects depend on the optical, magnetic or electrical properties of the specimen, and/or damage the specimen due to laser heating. The ARM method, on the other hand, uses a gentle generated by a power similar to ultrasound imaging, and at a lower frequency. The device is also compact and simple to use.

"Our method is a valuable platform for imaging and studying the effect of rotation at the single cell level," said co-lead author Adem Ozceki, graduate student in engineering science and mechanics. "More important, with the capacity to rotate large numbers of cells in parallel, researchers will be able to perform high-throughput single-cell studies. "

In addition to its applicability to a large range of biological and physical science investigations, ARM technology shows excellent biocompatibility in a HeLa cell viability test in which 99.2 percent of cells survived manipulation.

Explore further: Acoustic tweezers moves cells in three dimensions, builds structures

More information: "Rotational manipulation of single cells and organisms using acoustic waves" Nature Communications, 2016.

Related Stories

A cheap, disposable device for diagnosing disease

December 2, 2015

The development of a reusable microfluidic device for sorting and manipulating cells and other micro/nano meter scale objects will make biomedical diagnosis of diseases cheaper and more convenient in regions where medical ...

A fast cell sorter shrinks to cell phone size

September 22, 2015

Commercial fluorescence activated cell sorters have been highly successful in the past 40 years at rapidly and accurately aiding medical diagnosis and biological studies, but they are bulky and too expensive ($200,000 -$1,000,000) ...

Acoustic tweezers manipulate cell-to-cell contact

December 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate cell spacing ...

Recommended for you

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.