Researchers find new mechanism to explain the birth of cloud droplets

March 24, 2016, Lawrence Berkeley National Laboratory
Cloud droplets form when the amount of water vapor reaches a threshold value. Larger cloud droplets form when organic molecules (in red) are present on the surface instead of dissolving in the interior, or bulk, of the droplet. Credit: James Davies, Berkeley Lab

There is enough known about cloud formation that replicating its mechanism has become a staple of the school science project scene. But a new study by scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) reveals that much more is going on at the microscopic level of cloud formation than previously thought.

The scientists determined that organic molecules effectively depressed the of the water, allowing for more efficient formation of bigger .

"Conventional wisdom says that the water solubility of the aerosol is the key factor in the formation of cloud droplets," said study senior author Kevin Wilson, the deputy director of science at Berkeley Lab's Chemical Sciences Division. "The more easily a particle dissolves in water, the easier it is for a cloud droplet to form. What we're finding is that relying upon solubility alone doesn't always work. Our study suggests that what the aerosol is doing at the interface with water is what matters in accurately predicting whether it will go on to form cloud droplets."

The findings, to be published in the March 25 issue of the journal Science, could improve the accuracy of climate change models that predict the potential cooling effect of reflective clouds based upon the particles in the air.

"Accurately describing the connection between the chemistry of aerosol particles and the formation of cloud droplets remains difficult, and it is a key challenge for models to correctly predict climate," said Wilson.

Wilson worked with study lead author Christopher Ruehl, who did the research while he was a postdoctoral scholar; and co-author James Davies, a current postdoctoral scholar at Berkeley Lab.

The devil's in the details

The current understanding of how cloud droplets form involves water vapor that encounters cooler air, often at higher altitudes and lower pressure. The vapor then condenses into small droplets of water or ice crystals that comprise .

But the real catalyst in this process is the condensation of water on . These particles, known as cloud condensation nuclei, seed the formation of the cloud droplets. The details surrounding this microphysical process remain unclear, but the belief took hold among many atmospheric scientists and meteorologists that the main factor of significance when cloud droplets formed was the solubility of the aerosol.

These microscopic interactions could have macroscopic effects. The size of the droplets in a cloud affect its brightness. The smaller and more numerous the droplets, the more light gets scattered. Reflecting more light has the effect of cooling Earth's surface.

Certain inorganic particles, like sea salt, dissolve easily in water, but the atmosphere is typically a complex mixture of organic and inorganic aerosols. Sources of organic aerosols include diesel and gasoline emissions, forests, wildfires and even algal blooms in the ocean.

To account for this mix of particles, the Berkeley Lab researchers conducted experiments using custom-built equipment to model cloud droplet formation. They used dicarboxylic acids, a type of organic compound, and ammonium sulfate, an inorganic salt. They measured the size of the droplets formed when the particles were exposed to vapor under typical cloud-forming conditions.

"We were finding that the cloud droplets were 50 to 60 percent larger than predicted using standard models that relied upon how easily the particles could dissolve," said Ruehl, who is now an engineer studying vehicle emissions at the California Air Resources Board. "That's when we realized something else was going on, so we created a new model."

By factoring in the effects of surface tension depression, the researchers were able to correctly predict the size of the droplets formed.

"The role of inorganic and organic aerosols in has been a highly contentious issue that's been argued about for many years," said Wilson. "Based on the paper's findings, I would say that these surface interactions play a central role in cloud droplet formation, and that they should be considered in climate models."

Explore further: Scientists more accurately model the formation and growth of tiny particles that influence clouds and climate

More information: "An interfacial mechanism for cloud droplet formation on organic aerosols," Science, DOI: 10.1126/science.aad4889

Related Stories

Clouds reveal new particle formation process

February 15, 2016

In addition to precipitation, clouds influence the climate in various ways: they cover 70% of the Earth's surface and represent nearly 15% of the volume of the atmosphere. Scientists need to understand their underlying chemical ...

The birth of a cloud droplet

October 31, 2011

( -- Wrapped in mystery, the formation of a cloud droplet comes down to physics. Pacific Northwest National Laboratory led a research team that has helped peel away another layer of the cloud droplet conundrum. ...

Scientists study how water condenses to form clouds

July 2, 2012

Researchers at the University of Bristol with collaborators from ETH-Zurich have shown that the rate of condensation of water on organic aerosol particles in the atmosphere can be very slow, taking many hours for a particle ...

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Mar 24, 2016
Cloud formation solved for 300th time in the last 200 years.....
Da Schneib
5 / 5 (2) Mar 24, 2016
Oh, and BTW note that over 10% of aerosols in the atmosphere are due to human activity. That means humans have increased cloud cover by up to 10%.

So much for human activity not affecting the climate. I've always found this climate denier argument stupid, and now we have proof. Remember this, everyone, and every time a climate denier claims that human activity can't affect the climate, link this article.
1 / 5 (1) Mar 25, 2016
Maybe the climate is dependent on the man-made aerosols by now... Without them there would be less clouds and the atmosphere will heat up really fast. So think again before closing a factory.
1 / 5 (1) Mar 27, 2016
" The smaller and more numerous the droplets, the more light gets scattered. Reflecting more light has the effect of cooling Earth's surface."
@Da Schneib "over 10% of aerosols in the atmosphere are due to human activity. That means humans have increased cloud cover by up to 10%." Your argument implies that the climate should be cooling. Doesn't that contradict your dogma?
Mar 27, 2016
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.