Major breakthrough in new MRI scan technology for lung disease

March 10, 2016
Major breakthrough in new MRI scan technology for lung disease

New scanning technology which will give a much clearer picture of lung disease has taken a major step forward thanks to scientists at The University of Nottingham.

The experts at the Sir Peter Mansfield Imaging Centre have developed a process using specially treated krypton as an inhalable contrast agent to make the spaces inside the lungs show up on an Magnetic resonance imaging (MRI) scan. It's hoped the new process will eventually allow doctors to virtually see inside the lungs of patients.

Traditional uses hydrogen protons in the body as molecular targets to give a picture of tissue but this does not give a detailed picture of the lungs because they are full of air. Recent technological developments have led to a novel imaging methodology called Inhaled Hyperpolarised Gas MRI that uses lasers to 'hyperpolarise' a noble (inert) gas which aligns (polarises) the nuclei of the gas so it shows up on an MRI scan.

The work will make 3D imaging using 'atomic spies' like helium, xenon, or krypton possible in a single breath hold by the patient. Nottingham has pioneered hyperpolarized krypton MRI and is currently advancing this technology towards the clinical approval processes.

Hyperpolarised MRI research has been trying to overcome a problem with these noble gases retaining their hyperpolarised state for long enough for the gas to be inhaled, held in the lungs and scanned. Now in a paper published in the Proceedings of the National Academy of Sciences, the Nottingham team has developed a new technique to generate hyperpolarised krypton gas at high purity, a step that will significantly facilitate the use of this new contrast agent for pulmonary MRI.

Chair in Translational Imaging at the Sir Peter Mansfield Imaging Centre, Professor Thomas Meersmann, said: "It is particularly demanding to retain the hyperpolarized state of krypton during preparation of this contrast agent. We have solved a problem by using a process that is usually associated with clean energy related sciences. It's called catalytic hydrogen combustion. To hyperpolarise the krypton-83 gas we diluted it in for the laser pumping process. After successful laser treatment the hydrogen gas is mixed with molecular oxygen and literally exploded it away in a safe and controlled fashion through a catalysed combustion reaction.

"Remarkably, the hyperpolarized state of krypton-83 'survives' the combustion event. Water vapour, the sole product of the 'clean' hydrogen reaction, is easily removed through condensation, leaving behind the purified laser-polarized krypton-83 gas diluted only by small remaining quantities of harmless water vapour. This development significantly improves the potential usefulness of laser-pumped krypton-83 as MRI contrast agent for clinical applications."

This new technique can also be used to hyperpolarise another useful noble gas, xenon-129, and may lead to a cheaper and easier production of this contrast agent.

As part of a recent Medical Research Council funding award, hyperpolarised krypton-83 is currently being developed for whole body MRI at high magnetic field strength in the Sir Peter Mansfield Imaging Centre's large 7 Tesla scanner. Studies will be carried out first on healthy volunteers before progressing to patient trials at a later phase.

Explore further: A new scan for lung diseases

More information: Nicola J. Rogers et al. Molecular hydrogen and catalytic combustion in the production of hyperpolarized Kr and Xe MRI contrast agents , Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1600379113

Related Stories

A new scan for lung diseases

October 13, 2009

People with chronic lung disease and asthma could soon be offered better treatment thanks to a new type of Magnetic Resonance Imaging (MRI) scan being pioneered at The University of Nottingham.

Where did all the xenon go?

November 7, 2014

(Phys.org) —The noble gas xenon should be found in terrestrial and Martian atmospheres, but researchers have had a hard time finding it.

Combination of imaging methods improves diagnostics

February 19, 2015

Scientists from the Helmholtz Zentrum München and the Technische Universität München have succeeded in a breakthrough for the further development of contrast agents and consequently improved diagnostics with imaging using ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

The stacked color sensor

November 16, 2017

Red-sensitive, blue-sensitive and green-sensitive color sensors stacked on top of each other instead of being lined up in a mosaic pattern – this principle could allow image sensors with unprecedented resolution and sensitivity ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.