L1551 IRS 5: A curious case of a young and active binary star

March 31, 2016 by Tomasz Nowakowski, Phys.org report

The blueshifted outflow from L1551 IRS5 (upper left) has burst through the cloud surface and reveals intricate shocks as Herbig-Haro objects. Deep Hα and [SII] images obtained by Bo Reipurth at the 8m Subaru telescope; color composite by Robert Gendler. Credit: Fridlund, 2016.
(Phys.org)—L1551 IRS 5 is a young binary star, only about half a million years old. Due to its proximity (about 450 light years away) and its high activity, the system has been intriguing astronomers for many years. Malcolm Fridlund of the Leiden Observatory in Netherlands, studying L1551 IRS 5 for almost 40 years, is one of the scientists fascinated by this object. He has published more than 20 scientific papers regarding this topic, and the newest one, which appeared online on Mar. 22 in the arXiv repository, summarizes his efforts to better understand this curious system.

The binary star L1551 IRS 5 is located at the edge of a dense molecular cloud L1551 and has an atomic jet and an aligned molecular outflow that displays well separated blue- and red-shifted outflow lobes. Both stars are surrounded by a dust and gas disk that could be forming planetesimals.

"The larger of the pair is going to be something like the sun when it gets older, while the secondary is much smaller and will be a so-called . At the moment they are entering the very active T-Tauri star phase with jets and gas outflows," Fridlund told Phys.org.

Therefore, L1551 IRS 5 is a curious case for astronomers to study the early phases of star formation. It could provide a lot of details about how stars and even planets form.

"It is actually a very good, if not the best, 'laboratory' for studying how stars like the sun and smaller form," Fridlund noted.

Fridlund started his of the system in 1979 at the National Center for Atmospheric Research (NCAR) balloon base in Palestine, Texas. He carried out his own first observation of L1551 IRS 5 with a balloon-borne 60cm telescope, hanging under a balloon the size of a football field, and operating at 42 km altitude. These photometric observations allowed him to derive the distance of the system. He also classified the as a low-mass, pre-main-sequence stellar object, associated with the molecular outflow.

His research in the 1980s demonstrated clearly that the system's molecular outflow is mainly composed of the swept-up gas along the surface of the outflow lobe. He found that the outflow has the structure of evacuated edge-enhanced lobes, and that these lobes are filled with neutral atomic hydrogen (HI) gas participating in the outflow.

In the 1990s and the 2000s, Fridlund's research was focused on studying L1551 IRS 5 with the Hubble Space Telescope (HST). These observations confirmed the binarity of the jet, as well as identified the two separate velocity systems belonging to the two jets.

The system was also observed by the Onsala 20-meter telescope located in Sweden. This observation campaign allowed the researchers to determine the total mass of the gas, its kinematics and the general structure in a region about the size of the Oort cloud in the solar system.

Fridlund revealed that recent observations were concentrated on the movement of the gas in the surrounding disks in order to discern how momentum is transferred away from the star. He also disclosed the plans for further future studies.

"Now, we are proposing observations of the star's immediate vicinity both with European Southern Observatory's Very Large Telescope and a spectrograph to get the stellar properties much better, as at the moment we only have the mass and luminosity. We are also suggesting Hubble observations and Chandra X-ray observations to study the outflow and its interaction with the ambient medium," Fridlund said.

He concluded that L1551 IRS 5 has continued to surprise him for a very long time, and he is certain that new observations and monitoring in the optical and X-ray spectra will continue to do so.

Explore further: Revealing the complex outflow structure of binary UY Aurigae

More information: My Favorite Object L1551 IRS 5, arXiv:1603.06704 [astro-ph.SR] arxiv.org/abs/1603.06704

The L1551-IRS 5 source and its associated atomic jet and molecular outflow has been studied for over 40 years. In this overview of the source this fascinating object and its properties are reviewed and its importance today is re-evaluated.

Related Stories

Protostar growth spurts

November 4, 2015

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered an adolescent protostar that is undergoing a rapid-fire succession of growth spurts. Evidence for this fitful youth is seen in a pair ...

ALMA spots baby star's growing blanket

March 3, 2016

Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA) have made the first direct observations delineating the gas disk around a baby star from the infalling gas envelope. This finding fills an important ...

Gas giant planet discovered near the Milky Way's bulge

March 23, 2016

(Phys.org)—Using the gravitational microlensing technique, astronomers have recently detected what appears to be a Saturn-like planet residing near the Milky Way's bulge. The newly discovered exoplanet has a mass somewhere ...

Recommended for you

How hot are atoms in the shock wave of an exploding star?

January 21, 2019

A new method to measure the temperature of atoms during the explosive death of a star will help scientists understand the shock wave that occurs as a result of this supernova explosion. An international team of researchers, ...

New eclipsing cataclysmic variable discovered

January 21, 2019

Using the Mobile Astronomical System of Telescope-Robots (MASTER), an international team of astronomers has detected a new eclipsing cataclysmic variable. The newfound object, designated MASTER OT J061451.70–272535.5, is ...

The disintegrating exoplanet K2-22b

January 21, 2019

Exoplanet surveys have yielded many surprises over the years, and the discovery of "disintegrating" exoplanets was one of them. These are planets that produce asymmetric shapes in the dips of the light curves seen as they ...

Total lunar eclipse woos sky watchers

January 21, 2019

An unusual set of celestial circumstances came together over Sunday night and the wee hours of Monday for sky watchers in Europe, Africa and the Americas, where the moon was fully obscured before lighting up again with a ...

Making stars when the universe was half its age

January 18, 2019

The universe is about 13.8 billion years old, and its stars are arguably its most momentous handiwork. Astronomers studying the intricacies of star formation across cosmic time are trying to understand whether stars and the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.