Damage-signalling protein shows parallels between plant and human immune systems

March 24, 2016 by Patricia Waldron
BTI researchers used Arabidopsis plants (left) and gray mold (grown in a petri dish on the right) to investigate the damage-signalling function of HMGB3. Credit: Photo by Patricia Waldron

A protein that signals tissue damage to the human immune system has a counterpart that plays a similar role in plants, report researchers at the Boyce Thompson Institute (BTI).

Professor Daniel Klessig and colleagues have identified a new damage-associated molecular pattern molecule or "DAMP" in . DAMP molecules released by injured cells trigger an immune response in plants and animals. The researchers describe this protein, called HMGB3, in a new paper in PLOS Pathogens. Knowledge of HMGB3, and its human equivalent, HMGB1, enhances our understanding of how humans and plants fight off infections.

Plants and animal tissues use DAMPs to detect when they are wounded, so that they can promote healing and to fend off infection. DAMPs are always present inside cells, but are released into the surrounding space in response to tissue damage, where they activate inflammatory and immune responses.

The researchers discovered the actions of HMGB3 through their investigations of plant and animal proteins that interact with salicylic acid, a plant immune regulator and the main breakdown product of aspirin. A previous study by Klessig's lab found that salicylic acid blocks HMGB1, a DAMP in humans that is associated with multiple inflammation-related diseases. When they searched the genome of the model plant Arabidopsis for genes coding for similar proteins, they found HMGB3.

They compared the actions of HMGB3 in Arabidopsis plants to other known plant DAMPs, and measured the protein's ability to help plants fight off gray mold infection.

"We injected the protein into the extracellular space of the plant and then examined different layers of immune activity," said lead author Hyong Woo Choi, a senior research associate at BTI. The protein triggered a signaling cascade involved in the plant immune response, activated the expression of genes involved in defense, started callose deposition—a protective thickening of the cell walls—and made the plants more resistant to gray mold infection.

They found that, like human HMGB1, HMGB3 also interacts with salicylic acid, which inhibits its activities. The immune-boosting effects of HMGB3 in gray mold-infected plants were erased when the researchers added salicylic acid.

"The identification of salicylic acid's shared targets and mechanisms of action in plants and animals enable us to translate what has been learned in one system to the other, said Klessig. "For example, glyceraldehyde 3-phosphate dehydrogenase is another shared target. It is involved in the replication of several plant and animal viruses, including hepatitis A, B and C viruses in humans and tomato bushy stunt virus in plants. Notably, salicylic acid binding to this target suppresses replication of the plant virus."

In future work, Klessig and colleagues will continue to investigate targets of shared by plants and animals, which have important roles in disease.

Explore further: A breakdown product of aspirin blocks cell death associated with Alzheimer's, Parkinson's and Huntington's diseases

More information: Hyong Woo Choi et al. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid, PLOS Pathogens (2016). DOI: 10.1371/journal.ppat.1005518

Related Stories

Dual internal clocks keep plant defenses on schedule

June 22, 2015

Time management isn't just important for busy people—it's critical for plants, too. A Duke University study shows how two biological clocks work together to help plants deal with intermittent demands such as fungal infections, ...

Worm pheromones trigger plant defenses, study finds

July 24, 2015

Plants can sense parasitic roundworms in the soil by picking up on their chemical signals, a team of researchers at the Boyce Thompson Institute for Plant Research (BTI), on the Cornell University campus, has found.

Increasing crop resistance to pathogens

October 14, 2015

We all know that animals have an immune system - but plants have systems to fight infection too. Plant cells have receptor proteins which bind with parts of a pathogen. These receptor proteins are located on the surface of ...

Recommended for you

Mating induces sexual inhibition in female jumping spiders

October 18, 2017

After mating for the first time, most females of an Australian jumping spider are unreceptive to courtship by other males, and this sexual inhibition is immediate and often lasts for the rest of their lives, according to ...

Understanding the coevolving web of life as a network

October 18, 2017

Coevolution, which occurs when species interact and adapt to each other, is often studied in the context of pair-wise interactions between mutually beneficial symbiotic partners. But many species have mutualistic interactions ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.