Chinese scientists realize quantum simulation of the Unruh effect

March 14, 2016
(a) The NMR quantum simulator consists of 13C, 1H and 19F nuclear spins in chloroform; (b) The experimental pulse sequence for simulating the Unruh effect. Credit: ©Science China Press

Quantum mechanics and relativity theory are two pillars of modern physics. With their amalgamation, many novel phenomena have been identified. For example, the Unruh effect is one of the most significant outcomes of quantum field theory. This effect serves as an important tool to investigate phenomena such as thermal emission of particles from black holes and cosmological horizons. It has been 40 years since the discovery of the Unruh effect, but this effect is too weak to be observed using current techniques. To address this issue, quantum simulators may provide a promising approach. Quantum simulation is widely applied for simulating the quantum systems that cannot be efficiently simulated by classical computers or are not directly tractable by the current techniques in the laboratory.

The researchers, led by Prof. Jiangfeng Du from University of Science and Technology of China, reported an experimental simulation of the Unruh effect with an NMR quantum simulator. The experiments were performed on a Bruker Avance III 400MHz spectrometer. The researchers used a sample of 13C, 1H and 19F nuclear spins in chloroform as the NMR quantum simulator, as shown in Figure 1(a). The simulated Unruh effect on the quantum states can be realized by the pulse sequence acting on the sample, as depicted in Figure 1(b). Via the quantum simulator, they experimentally demonstrated the behavior of Unruh temperature with acceleration, which agrees nicely with the theoretical prediction, as shown in Figure 2. Furthermore, they investigated the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown for the first time that the can be created by the Unruh effect from the classically correlated states. This work was recently published in the Science China-Physics, Mechanics & Astronomy.

Experimental results (blue triangles) of simulating the Unruh temperature with the acceleration parameter. The blue line is the theoretical prediction. Credit: ©Science China Press

It is interesting that the Unruh effect was on Feynman's blackboard as an issue to study at the time of his death in 1988, while it was also Feynman who conceived the idea of quantum simulation in 1982. This quantum simulation of the Unruh effect could provide a promising window to explore the quantum physics of accelerated systems, which appear in black hole physics, cosmology and particle physics.

Explore further: The 'great smoky dragon' of quantum physics

More information: FangZhou Jin et al. Experimental simulation of the Unruh effect on an NMR quantum simulator, Science China Physics, Mechanics & Astronomy (2016). DOI: 10.1007/s11433-016-5779-7

Related Stories

The 'great smoky dragon' of quantum physics

March 10, 2016

University of Vienna physicists have, for the first time, evaluated the almost 100-year long history of quantum delayed-choice experiments—from the theoretical beginnings with Albert Einstein to the latest research works ...

Researchers propose a new system for quantum simulation

September 3, 2013

Researchers from the universities in Mainz, Frankfurt, Hamburg and Ulm have proposed a new platform for quantum simulation. In a theoretical paper recently published in Physical Review Letters, they show that a combined system ...

What is quantum in quantum thermodynamics?

October 12, 2015

(Phys.org)—A lot of attention has been given to the differences between the quantum and classical worlds. For example, quantum entanglement, superposition, and teleportation are purely quantum phenomena with no classical ...

Quantum simulators explained

August 11, 2014

Everything you ever wanted to know about quantum simulators summed up in a new review from EPJ Quantum Technology.

Three 'twisted' photons in 3 dimensions

February 29, 2016

Researchers at the Institute of Quantum Optics and Quantum Information, the University of Vienna, and the Universitat Autonoma de Barcelona have achieved a new milestone in quantum physics: they were able to entangle three ...

Recommended for you

Designing new materials from 'small' data

February 17, 2017

Finding new functional materials is always tricky. But searching for very specific properties among a relatively small family of known materials is even more difficult.

Physicists harness neglected properties of light

February 15, 2017

University of Toronto (U of T) researchers have demonstrated a way to increase the resolution of microscopes and telescopes beyond long-accepted limitations by tapping into previously neglected properties of light. The method ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.