Atmospheric river storms can reduce Sierra snow

March 3, 2016 by Alan Buis
Rain falling on snow. Credit: Flickr user Malcolm Peacey, CC BY-NC 2.0

A new study by NASA and several partners has found that in California's Sierra Nevada, atmospheric river storms are two-and-a-half times more likely than other types of winter storms to result in destructive "rain-on-snow" events, where rain falls on existing snowpack, causing it to melt. Those events increase flood risks in winter and reduce water availability the following summer.

The study, based on NASA satellite and ground-based data from 1998 through 2014, is the first to establish a climatological connection between atmospheric river storms and rain-on-snow events. Partnering with NASA on the study were UCLA; Scripps Institution of Oceanography, San Diego; and the Earth System Research Laboratory, Boulder, Colorado.

Atmospheric rivers are narrow jets of very humid air that normally originate thousands of miles off the West Coast, in the warm subtropical Pacific Ocean. When the warm, moist air hits the Sierra Nevada and other high mountains, it drops much of its moisture as precipitation. Only 17 percent of West Coast storms are caused by atmospheric rivers, but those storms provide 30 to 50 percent of California's precipitation and 40 percent of Sierra snowpack, on average. They have also been blamed for more than 80 percent of the state's major floods.

"In California, atmospheric rivers tend to be the warmest we get. We wanted to understand what the connection was between these storms and rain-on-snow events," said Bin Guan, lead author of the study, which is accepted for publication in the journal Geophysical Research Letters. Guan is affiliated with the Joint Institute for Regional Earth System Science and Engineering, a collaboration between NASA's Jet Propulsion Laboratory in Pasadena, California, and UCLA.

Animation of an atmospheric river storm that occurred on Jan. 28 through 30, bringing half an inch to an inch of rain to many locations in central and southern California. Credit: University of Wisconsin/CIMSS

"The research extends our understanding of how important atmospheric rivers are to extreme events in California, including their key roles in both water supply and flooding," said study co-author Marty Ralph of Scripps Institution of Oceanography. "It adds a new dimension of awareness when trying to anticipate the potential impact of a landfalling atmospheric river that could prove useful to water managers."

The researchers also quantified the difference between atmospheric river storms that cause rain-on-snow and those that do not, using data from NASA's Atmospheric infrared Sounder, or AIRS, instrument on NASA's Aqua satellite. The rain-on-snow-producing atmospheric river storms were, on average, 4 degrees Fahrenheit (2 degrees Celsius) warmer than the others.

"That small difference in temperature often determines whether we gain snow or lose snow from a storm," said Guan.

The researchers found that the warmer storms typically originate in the Pacific south of 25 degrees north latitude. The cases without rain-on-snow events came from farther north, outside the tropics.

The amount of snow that melts in these events depends on how warm the rain and air are and how much rain falls. But the researchers found that, on average, warmer storms generate about a quarter-inch (0.7 centimeter) of snowmelt (i.e. liquid water) for each day of rain, providing 20 percent of the water available for runoff in these events. In other words, as Guan explained, "The primary contribution to any flooding still comes from the rainfall, but the melting snow makes things 20 percent worse."

"These results highlight the value of observing these events to better understand and, we hope, predict rain, snow and floods in our region," said study co-author Duane Waliser, chief scientist of the Earth Science and Technology Directorate at JPL.

NASA's AIRS instrument measures atmospheric temperature and moisture, providing insight into the physical processes of atmospheric rivers and also providing sorely needed data over Earth's ocean, where conventional observations are limited. These contributions can improve weather forecasts of making landfall on the U.S. West Coast.

Explore further: Study finds climate link to atmospheric-river storms

More information: Bin Guan et al. Hydrometeorological Characteristics of Rain-on-Snow Events Associated with Atmospheric Rivers, Geophysical Research Letters (2016). DOI: 10.1002/2016GL067978

Related Stories

Study finds climate link to atmospheric-river storms

November 11, 2013

(Phys.org) —A new NASA-led study of atmospheric-river storms from the Pacific Ocean may help scientists better predict major winter snowfalls that hit West Coast mountains and lead to heavy spring runoff and sometimes flooding.

Aerosols, atmospheric rivers, and California reservoirs

January 19, 2015

In the midst of the California rainy season, scientists are embarking on a field campaign designed to improve the understanding of the natural and human-caused phenomena that determine when and how the state gets its precipitation. ...

Improving forecasts for rain-on-snow flooding

December 18, 2014

Many of the worst West Coast winter floods pack a double punch. Heavy rains and melting snow wash down the mountains together to breach riverbanks, wash out roads and flood buildings.

Recommended for you

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

Cool roofs have water saving benefits too

October 20, 2017

The energy and climate benefits of cool roofs have been well established: By reflecting rather than absorbing the sun's energy, light-colored roofs keep buildings, cities, and even the entire planet cooler. Now a new study ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.