Astronomers glimpse supernova shockwave

Astronomers glimpse supernova shockwave

Astronomers have captured the earliest minutes of two exploding stars and for the first time seen a shockwave generated by a star's collapsing core.

The international team found a shockwave only in the smaller supernova, a finding that will help them understand these complex explosions that create many of the elements that make up humans, the Earth and the Solar System.

"It's like the shockwave from a , only much bigger, and no one gets hurt," said Dr Brad Tucker, from ANU Research School of Astronomy and Astrophysics.

Stars explode when their fuel runs down and the core collapses. The resulting is brighter than the rest of its galaxy and shines for some weeks.

Supernovae are so bright that they can be seen in distant galaxies, which has helped astronomers learn much about the large-scale structure of the universe. However, very little is known about the early stages of these explosions.

The research, published in the Astrophysical Journal, reports the explosions of two old-age , red supergiants.

As the core of a supernova collapses to form a neutron star, energy bounces back from the core in the form of a shockwave that travels at 30,000 to 40,000 kilometres per second, and causes the nuclear fusion that creates such as gold, silver and uranium.

The team from ANU and US institutions the University of Notre Dame, the Space Telescope Science Institute, the University of California Berkeley, and University of Maryland, saw a shockwave only in the smaller star with a radius 270 times that of the Sun, shown as a peak in the light emitted from the explosion in the first few days.

In the second star, a large supergiant with radius 460 times that of the Sun, a shockwave could not be detected, although it must have existed, said Dr Tucker.

"The star was so large that the did not travel all the way to the surface," he said.

Astronomers glimpse supernova shockwave

The observation will help astronomers fine-tune their understanding of how the size and composition of the star affects the early moments of their explosive death.

"We are really probing the process of blowing up," Dr Tucker said.

"Supernovae made the heavy elements we need to survive, such as iron, zinc and iodine, so we are really learning about how we are created."

Astronomers glimpse supernova shockwave

More information: Shock Breakout and Early Light Curves of Type II-P Supernovae Observed with Kepler.

Journal information: Astrophysical Journal

Citation: Astronomers glimpse supernova shockwave (2016, March 22) retrieved 5 December 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Caught for the first time: The early flash of an exploding star


Feedback to editors