Unmasking the properties of 2-D materials

February 24, 2016, Agency for Science, Technology and Research (A*STAR), Singapore

It is now possible to grow large-area ultrathin sheets of molybdenum disulfide, a two-dimensional (2D) material promising the next generation of electronic and optoelectronic devices, thanks to a new twist on a standard method developed by A*STAR scientists.

Molybdenum disulfide, one of a family of so-called semiconducting transitional metal dichalcogenides (TMDCs), has attracted considerable attention as a 2D material, thanks to its remarkable electronic and optoelectronic properties. But preparing large-area atomically thin layers of TMDCs is notoriously difficult, with conventional growth methods such as mechanical exfoliation and yielding single-layer films only a few micrometers in size.

To overcome the limitation of such a useful material, Dongzhi Chi and Hongfei Liu of the A*STAR Institute of Materials Research and Engineering searched for a way to modify a standard fabrication technique, to grow high quality, millimeter-sized single-layer nanosheets.

"The growth mechanism of 2D films is still not fully understood and is a major hurdle for their large scale adoption in electronic applications," says Chi. "Growing large-area 2D materials allows for large scale fabrication of integrated circuits using conventional semiconductor processing methods."

By modifying chemical vapor deposition—a manufacturing tool used in everything from sunglasses to potato chip bags and fundamental to the production of much of today's electronic devices—they were able to grow single-layer disulfide nanosheets of greatly increased grain size.

"Smaller result in structural defects, so devices fabricated with such materials perform poorly," explains Chi. "Larger grain sized 2D TMDCs, however, minimize these defects and lead to improved performance."

In a pressurized reaction chamber, powdered molybdenum trioxide and sulfur were vaporized. To create larger grain sizes, the researchers increased the temperature of the reaction chamber and used a silicon or quartz shadow mask, held over a sapphire substrate, to indirectly supply the molybdenum trioxide and sulfur vapors to the advancing molybdenum disulfide growth front on the substrate.

Ripples were introduced into the single-layer molybdenum disulfide nanosheets by illuminating them with a laser. These ripple structures are predicted to have a significant effect on the electronic, mechanical, and transport properties of single-layer molybdenum disulfide.

To compare the single-layer molybdenum disulfide nanosheets and their laser-induced ripple structures, the researchers used a number of characterization tools, including Raman scattering and photoluminescence spectroscopy as well as atomic-force microscopy.

"Studying these materials may lead to the discovery of new physics and also aid fabrication of electronic and with novel functions and improved performances," says Chi.

Explore further: Method for creating high-quality two-dimensional materials could enable industrial-scale production

More information: Hongfei Liu et al. Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate, Scientific Reports (2015). DOI: 10.1038/srep11756

Related Stories

Surprising discoveries about 2-D molybdenum disulfide

August 14, 2015

Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have used a unique nano-optical probe to study the effects of illumination on two-dimensional semiconductors at the ...

Spin dynamics in an atomically thin semi-conductor

February 1, 2016

Researchers at the National University of Singapore (NUS) and Yale-NUS College have established the mechanisms for spin motion in molybdenum disulfide, an emerging two-dimensional (2D) material. Their discovery resolves a ...

Scalable CVD process for making 2-D molybdenum diselenide

April 8, 2014

(Phys.org) —Nanoengineering researchers at Rice University and Nanyang Technological University in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a highly ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.