A living, breathing textile aims to enhance athletic performance

February 17, 2016 by Sharon Lacey, Massachusetts Institute of Technology
bioLogic Second Skin from the MIT Media Lab's Tangible Media Group. Credit: Tangible Media Group/MIT Media Lab

Textile production has historically been a bellwether for innovations in manufacturing—from technological improvements such as the spinney jenny and the flying shuttle at the dawn of the Industrial Revolution to recent developments in electronic and reactive textiles by designers such as Joanna Berzowska MS '99, who are transforming fabrics into wearable computers. Now, bioLogic, a research team in the Tangible Media Group within the MIT Media Lab, has created a completely new form of performance fabric that combines biomaterials research with textile design. BioLogic is growing living actuators and synthesizing responsive bio-skin in the era where, they declare, "bio is the new interface." They say, "we are imagining a world where actuators and sensors can be grown rather than manufactured, being derived from nature as opposed to engineered in factories."

Under the direction of Professor Hiroshi Ishii, the bioLogic team has unearthed a new behavior of the ancient bacteria Bacillus subtilis natto: the expansion and contraction of the natto cells relative to atmospheric moisture. The team is capitalizing on this natural phenomenon by embedding the bacteria into fabric to ventilate garments. They harvest the animate natto cells in a bio lab and assemble them with a micron-resolution bio-printing system, transforming them into responsive fashion, a "second skin." The synthetic bio-skin reacts to body heat and sweat, causing flaps around heat zones to open, enabling sweat to evaporate and cool down the body through an organic material flux.

Together with New Balance, bioLogic is applying this technology to creating sportswear that regulates athletes' body temperatures, thereby enhancing performance. Lining Yao, who is responsible for concept creation, interaction design, and fabrication for bioLogic, explains, "We are trying to explore how the physical materials and physical environment can be smarter, more adaptive, and become part of us. This garment will understand when you sweat, and it will sense and open up to release your sweat, and close up to keep you warm again. A garment can become an interface that can communicate with your body. The reason we started to explore this bacteria is that we knew that in the natural world there are a lot of smart materials that are naturally responsive. It's very sensitive to even tiny changes in the skin condition, so we thought an on-skin transformable textile would be a really interesting application."

Beyond the industrial collaboration, a grant from the MIT Council for the Arts enabled bioLogic to invite fashion- and product designers from the Royal College of Art, Oksana Anilionyte and Helene Steiner, to bring the project to a new artistic level. Yao explains that bioLogic chose to focus their efforts on the more cutting-edge technological, artistic, or conceptual ideas, and hope some of the pragmatic concerns—like washing and caring for garments made from the "bio-skin"—will be addressed by the wider design community who produce and use the fabric. The project has already piqued the interest of several fashion designers from Central Saint Martins and Parsons, who see a number of potential uses, including creating a garment for Korean women who fish and using this natural nanoactuator to explore other forms of clothing.

While this project appeals to fashion designers and those creating athletic attire, Ishii points out that the Tangible Media Group focuses on diverse actuated materials: "This is one specific instance. We are not really dedicated to fashion design or dance performance wear, but for this project we did specific experiments applying to those areas. We are devoted to the much more fundamental concept of 'radical atoms.' Basically, we are interested in materials that artists and designers would use to express their ideas. For example, a product designer may use metal or glass or plastic. Computer designers may use a pixel in the computer screen, but that's intangible. Physical materials are nice, but frozen; they're dead. So we are interested in making materials that transform dynamically. That's what we call 'radical atoms.'"

Yao says this project aligned perfectly with the group's vision of "human interaction with future dynamic materials." She adds that "the general idea is not only how you can be inspired by nature, but how you can collaborate with nature."

Explore further: MIT group explores bacteria use for comfort wear

Related Stories

MIT Transform project gives shape to human-object interplay

April 14, 2014

(Phys.org) —Making still objects come alive is more than poetic metaphor at the MIT Tangible Media Group. They have a project called Transform that seeks to turn a static furnishing into a dynamic stream of motion through ...

Scientists bridge different materials by design

February 4, 2016

Scientists at the University of Liverpool have shown that it is possible to design and construct interfaces between materials with different structures by making a bridge between them.

Wireless monitoring of newborns

January 13, 2016

An Italian SME has developed a wearable monitoring system for babies as they go through the sensitive period of the first two to four hours of life. The technology, whose market potential has been assessed with funding under ...

Recommended for you

What can snakes teach us about engineering friction?

May 21, 2018

If you want to know how to make a sneaker with better traction, just ask a snake. That's the theory driving the research of Hisham Abdel-Aal, Ph.D., an associate teaching professor from Drexel University's College of Engineering ...

Flexible, highly efficient multimodal energy harvesting

May 21, 2018

A 10-fold increase in the ability to harvest mechanical and thermal energy over standard piezoelectric composites may be possible using a piezoelectric ceramic foam supported by a flexible polymer support, according to Penn ...

Self-assembling 3-D battery would charge in seconds

May 17, 2018

The world is a big place, but it's gotten smaller with the advent of technologies that put people from across the globe in the palm of one's hand. And as the world has shrunk, it has also demanded that things happen ever ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 17, 2016
This is great, but I wonder how the bacteria will survive, and what concerns there are with a large quantity of bacteria being embedded in a garment. I would think for such a "simple" task, a technological solution would be better. I imagine a jacket you can wear that has an electronic/reactive weave that lets air/moisture out when needed and closes up when its needed. I would love to have one for the fall and spring.

But what really fascinates me is genitically engineered bio-clothing and suits, that are built to suit the human body, and to enhance it, but also be removable, not permanent. The future is going to be awesome!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.