Organic waste for sustainable batteries

February 18, 2016
The new carbon-based material for sodium-ion batteries can be extracted from apples. Credit: KIT/HIU

A carbon-based active material produced from apple leftovers and a material of layered oxides might help reduce the costs of future energy storage systems. Both were found to have excellent electrochemical properties and stand for the environmentally compatible and sustainable use of resources. Now, these materials are presented by researchers of the Helmholtz Institute Ulm of Karlsruhe Institute of Technology in the journals ChemElectroChem and Advanced Energy Materials.

Sodium-ion batteries are not only far more powerful than nickel-metal hydride or lead acid accumulators, but also represent an alternative to lithium-ion technology, as the initial materials needed are highly abundant, easily accessible, and available at low cost. Hence, are a very promising technology for stationary systems that play a central role in the transformation of the energy system and will be a highly attractive market in the future.

Now, researchers of the team of Professor Stefano Passerini and Dr. Daniel Buchholz of the Helmholtz Institute Ulm of Karlsruhe Institute of Technology have made an important step towards the development of active materials for sodium-based . For the negative electrode, a carbon-based material was developed, which can be produced from the leftovers of apples and possesses excellent electrochemical properties. So far, more than 1000 charge and discharge cycles of high cyclic stability and high capacity have been demonstrated. This discovery represents an important step towards the sustainable use and exploitation of resources, such as organic waste.

Schematic structure of the layered oxides produced. Credit: KIT/HIU

The material developed for the positive electrode consists of several layers of sodium oxides. This active material goes without the expensive and environmentally hazardous element cobalt that is frequently used in active materials of commercial lithium-ion batteries. At the laboratory, the new active material, in which proper takes place, reaches the same efficiency, cyclic stability, capacity, and voltage without any cobalt.

Both materials mark an important step towards the development of inexpensive and environmentally friendly sodium-ion batteries.

Explore further: Novel synthesis method opens up new possibilities for Li-ion batteries

More information: Liming Wu et al. Apple-Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries, ChemElectroChem (2016). DOI: 10.1002/celc.201500437

Marlou Keller et al. Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases, Advanced Energy Materials (2016). DOI: 10.1002/aenm.201501555

Related Stories

New low-cost battery could help store renewable energy

November 4, 2015

Wind and solar energy projects are growing at a respectable clip. But storing electric power for days when the air is still or when the sun goes down remains a challenge, largely due to cost. Now researchers are developing ...

Melting, coating, and all-solid-state lithium batteries

January 1, 2016

The joint research team of Prof. Yoon Seok Jung (UNIST, School of Energy and Chemical Engineering) and Prof. Seng M. Oh (Seoul National University) discovered a new way to develop all-solid-state lithium batteries without ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.