Plastics of the future may be made from sulfur, not oil, putting waste to good use

January 6, 2016 by Charles Dunnill, University Of Swansea, The Conversation
Credit: sergioboccardo/

What has chemistry ever done for me, you might ask? Just as Dustin Hoffman was told by one of his would-be mentors in The Graduate, one answer is plastics – one of the greatest chemical innovations of the 20th century.

Most plastic items are made of chemicals such as polyethylene (PET), polypropylene (PP), polyurethane, or polyvinylchloride (PVC) which are all derived from . These monomers are obtained industrially from the fractional distillation of crude oil, and polymerised in great quantities with catalysts in a process developed in the 1950s and 60s. Chemists Karl Ziegler and Giulio Natta shared the 1963 Nobel Prize in Chemistry for their titanium catalyst process, which for cost-effectiveness has yet to be bettered.

So the industrial feedstocks and methods of manufacturing have not changed significantly for more than 60 years. But the situation has: oil is harder to come by and (usually) more expensive, and environmental pressures are growing. If we want to keep plastics, we will need to find new ways of making them.

Both an important mineral for health as a solid but poisonous as a gas, usually conjures up vivid images of fire, volcanoes and, through its archaic name brimstone, even hell itself. But in fact sulfur is a waste product from many industrial processes and could be an alternative to oil from which to manufacture plastics.

Under the right conditions, initially discovered by Jeffrey Pyun, sulfur can change from its usual ring-like chemical structure and instead form into long chains. These chains of sulfur can be joined together to create a solid plastic or rubber using other to link them together. This process is dubbed inverse vulcanisation, as it is the opposite of the vulcanisation process applied to carbon to make rubber.

Patented by Charles Goodyear in 1844, the vulcanisation process joins long chains of using sulfur, transforming liquid oil into solid rubber. So while rubber is mostly carbon with a small amount of sulfur, conversely sulfur-based plastics are mostly sulfur with a small amount of carbon. If we replace most plastics made with oil with plastics made with sulfur it would reduce demand for oil and put to use huge amounts of waste sulfur at the same time – the pyramids of sulfur pictured above are byproducts of the Alberta processing.

Our research has examined how to change the way sulfur polymers act so as to make them suitable for different uses. For example, we can change the properties and proportion of carbon depending on what is required – hard plastics contain more carbon molecules, soft plastics fewer. We can also add nanoparticles to the mix that have the properties we want the plastic to have, as they donate their characteristics to the end plastic result.

Oil companies already spend billions of dollars removing sulfurous compounds from petroleum every year to meet environmental regulations, as sulfur in the air forms sulfuric and nitric acid, which falls as damaging acid rain. And as the oil industry turns to extracting oil from sulfur-rich tar sands, the amount of waste sulphur increases hugely.

The processes developed by ourselves and others have shown that inverse-vulcanisation polymers are not just viable but they can be customised to suit a range of applications, simply by heating melted sulphur and organic molecules at 185°C for 8-10 minutes without the need for a catalyst. Investigation into how this would work on a large scale has shown even lower temperatures can suffice.

In terms of customisable physical properties, the polymers can be moulded into a variety of shapes, and astonishing detail is possible. By varying the organic content, the polymers can produce hard, glass-like plastics, or tacky, malleable substances which have potential as adhesives. This physical tuneability has led to their use even as a cathode material for a new generation of lithium-sulphur batteries. Sulphur polymers also reveal remarkable optical properties, assuming a native transparent, ruby-red colour. This could be used for infrared lenses and/or optical filters. At this early stage, scientists are just scratching the surface of what could be possible.

Sulphur-polymeric materials are very much in their infancy. But if you consider the extent and speed of the development of plastics over the last 60 years, these materials might just offer a breakthrough in reducing consumption of fossil fuels and put us on course towards a responsible energy future. And who knows? There might be many more amazing properties to discover along the way.

Explore further: Video: 'Yellow chemistry' turns sulfur waste into plastics

Related Stories

Video: 'Yellow chemistry' turns sulfur waste into plastics

August 18, 2015

While many scientists are hard at work on "green chemistry" projects that will benefit the environment, there are a handful of researchers at the University of Arizona who are starting a trend of their own—"yellow chemistry." ...

Better batteries from waste sulfur

April 14, 2013

A new chemical process can transform waste sulfur into a lightweight plastic that may improve batteries for electric cars, reports a University of Arizona-led team. The new plastic has other potential uses, including optical ...

Better thermal-imaging lens from waste sulfur

April 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team has found.

Strong odour challenge of mercaptans

November 13, 2015

Mercaptans or thiols are a special class of organic compounds that contain sulfur functional group RSH. Various sulfur compounds are sought for the formation of new materials in photonics, optics, the pharmaceutical industry, ...

How orange peel could replace crude oil in plastics

September 16, 2015

Orange juice, both delicious and nutritious, is enjoyed by millions of people across the world every day. However, new research indicates that it could have potential far beyond the breakfast table. The chemicals in orange ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 03, 2016
Sulfur dioxide is a noxious poisonous gas, which gets released in large amounts any time you burn any of the plastic, intentionally or by accident. Released into the atmosphere, it turns into acid rain and smog. The stuff would be worse than burning old car tires.

Plastics made out of sulfur would be non-biodegradeable and you couldn't put them in landfills or burn them for energy due to pollution concerns, and yet if you did replace hydrocarbon plastics with sulfur plastics in everyday use they would eventually find themselves in the oceans and landfills and being burned because people don't care and fires happen.

So in practice it would be a disaster.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.