Researchers use neutrons to gain insight into battery inefficiency

January 20, 2016 by Ashanti B. Washington, Oak Ridge National Laboratory
In a Fluid Interface Reactions, Structures and Transport Center project to probe a battery’s atomic activity during its first charging cycle, Robert Sacci and colleagues used the Spallation Neutron Source’s vibrational spectrometer to gain chemical information. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Genevieve Martin

Rechargeable batteries power everything from electric vehicles to wearable gadgets, but obstacles limit the creation of sleeker, longer-lasting and more efficient power sources. Batteries produce electricity when charged atoms, known as ions, move in a circuit from a positive end (anode) to a negative end (cathode) through a facilitating mix of molecules called an electrolyte.

Scientists at the Department of Energy's Oak Ridge National Laboratory are improving the lifetimes of that run on lithium, a small atom that can pack tightly into graphite anode materials. The valuable ions are depleted as a charges, and they are also lost to the formation of a thin coating on a battery's anode during initial charging. ORNL researchers used two of the most powerful neutron science facilities in the world to try to understand the dynamics behind this phenomenon.

In a paper published in the Journal of Physical Chemistry C, the ORNL researchers focused on the spontaneous growth of the thin coating, called the solid-electrolyte interphase (SEI). This nanoscale coating protects and stabilizes the new battery, but it comes at a cost. The electrolyte, a mixture of molecules composed of hydrogen, carbon, lithium and oxygen, is forced to break down to form this film.

"The big picture is to increase the amount of lithium we can put into a battery," said Robert Sacci, lead author and Materials Science and Technology Division scientist. "When you develop a battery, you put in excess lithium because a lot of that lithium gets eaten up or taken away from usability to form this thin film."

Sacci and colleagues used beams of subatomic particles called neutrons to delve into a battery's atomic reactivity during its first charging cycle. Neutrons were necessary because they can easily enter three-dimensional structures and are sensitive to changes in hydrogen concentration, a major component of electrolytes.

ORNL researchers targeted anode samples with neutrons from the Spallation Neutron Source (SNS), the world's most intense pulsed beam, and the High Flux Isotope Reactor (HFIR), the highest continuous-beam research reactor in the United States. They tracked the scattered paths of the neutrons after the beams penetrated the material, creating a constantly updating map of the sample's molecular dynamics.

Neutron scattering is key to understanding battery activity on the atomic scale. While the diffracted beams of neutrons would appear to be a jumbled mess to most—like lights dancing off a disco ball in all directions—skilled scientists use these scattering signals to calculate chemical and structural changes while the SEI layer develops.

Is battery film friend or foe?

Once the SEI layer forms, it buffers degradation of the electrolyte and prevents a dangerous buildup of metal deposits on the lithiated-graphite anode, increasing a battery's life cycle.

Sacci and his team wondered if a pre-made film could protect the anode while minimizing the consumption of lithium ions.

The ORNL scientists incorporated lithium atoms into vacancies within graphite through grinding at high force. The result was a powdery, charged anode material that they then dipped into an electrolyte solution.

A thin film formed around each lithiated-graphite particle, encapsulating it. At this point, the scientists were ready to subject samples to neutron scattering tests to gain a fresh perspective into how an SEI layer generates during initial charging of a lithium-ion battery.

Researchers used SNS's vibrational spectrometer, VISION, to gain chemical information about the SEI layer. HFIR allowed the ORNL scientists to use small-angle neutron scattering (SANS) techniques to map the thin film's structure and chart new information about its formation.

"With VISION, we can measure the vibrations of atoms, which tell us how they are bound within molecules, and with SANS, a scattering instrument at HFIR, you're looking more or less at how big the particles are and how they are arranged," Sacci said.

After exploring the lithiated-graphite anode material, Sacci and his fellow energy researchers now understand the chemical process by which the thin protective layer generates on the anode.

"We were able to definitely say, yes a polymer formed, the particles appeared bigger—which means a layer grew on them—and they were more interconnected," said Sacci.

"The advantage of forming this polymeric solid-electrolyte interface prior to battery assembly is that the battery would last longer, and that it's a good stepping stone to giving us clues into how to design these artificial interfaces."

Explore further: The road to longer battery life

More information: Robert L. Sacci et al. Structure of Spontaneously Formed Solid-Electrolyte Interphase on Lithiated Graphite Determined Using Small-Angle Neutron Scattering, The Journal of Physical Chemistry C (2015). DOI: 10.1021/acs.jpcc.5b00215

Related Stories

The road to longer battery life

October 14, 2015

Are you sick of your phone's battery dying after only a few hours? Researchers from the Norwegian University of Science and Technology are hard at work on improving something called the solid electrolyte interphase as a ...

Solid electrolyte interphases on lithium metal anode

November 23, 2015

The prestigious Advanced Science journal has just published a review paper on solid electrolyte interphases of lithium metal anodes contributed by Prof. Qiang Zhang in Tsinghua University, China and Ji-Guang Zhang in Pacific ...

Battery development may extend range of electric cars

January 9, 2014

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical hurdles. Now, ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.