GaN power amplifier with world's highest output performance for W-band wireless transmissions

January 26, 2016, Fujitsu
GaN power amplifier with world's highest output performance for W-band wireless transmissions
Figure 1: Cross-sectional diagram of the GaN-HEMT device

Fujitsu today announced the development of a gallium-nitride (GaN) high-electron mobility transistor (HEMT) power amplifier for use in W-band (75-110 GHz) transmissions.

This can be used in a high-capacity wireless network with coverage over a radius of several kilometers. In areas where fiber-optic cable is difficult to lay, to achieve high-speed of several gigabits per second, one promising approach is to use high-frequency bands, such as the W band, which uses a wide frequency band. In order to get good long-distance coverage in these frequencies, however, it is necessary to increase the of the power amplifier to the scale of watts. Fujitsu succeeded in developing a power amplifier for W-band transmissions using GaN-HEMT technology capable of high output at 100 GHz. Evaluations of the newly developed power amplifier confirmed it to have 1.8 times increased output performance than before, which would translate to an increase of over 30% in transmission range when used in a high-speed wireless network. A portion of this research was conducted as part of a project of the National Institute of Information and Communications Technology (NICT) on "Agile Deployment Capability of Highly Resilient Optical and Radio Seamless Communication Systems." Details of this technology are being presented at Power Amplifiers for Wireless and Radio Applications (PAWR2016), opening January 24 in Austin, Texas.

High-frequency wireless communications, using the frequency band known as the W band (75-110 GHz), are drawing increasing interest, both as a way to temporarily set up high-capacity communications channels for handling special events where large numbers of people gather, or for responding to disasters, and also as a way to bring communications to remote areas where fiber-optic cables are difficult to lay. Compared to today's mobile phones, which use frequencies in the 0.8-2.0 GHz range, the W band uses a frequency band more than 50 times as broad with 50 times the speed, meaning it is a that is well-suited to these high-capacity wireless communications.

In order to transmit wireless signals over a distance of several kilometers, the transmission antenna needs a power amplifier capable of a high output on the order of several watts. Existing for high-frequency transmissions in the millimeter-wave band (30-300 GHz), which are built using gallium arsenide or CMOS semiconductors, are limited by their operating voltage to an output of about 0.1 W, and it has not been possible to increase this. GaN-HEMT power amplifiers have achieved high output performance in the microwave range (3-30 GHz), but the problem up until now was that their output performance declined in the W-band range. To solve these problems, Fujitsu developed a GaN-HEMT device with a unique structure capable of increasing output in the millimeter band (Figure 1). This uses a layer of indium-aluminum-gallium-nitride (InAlGaN), and double-layer silicon nitride (SiN) passivation film to increase current density by a factor of about 1.4, resulting in 3.0 W of output power from a transistor per 1-mm of gate width, at a high frequency of 100 GHz. In developing this transistor, Fujitsu collaborated with Professor Yasuyuki Miyamoto of the Tokyo Institute of Technology in developing a device-simulation technology.

GaN power amplifier with world's highest output performance for W-band wireless transmissions
Figure 2: Chip containing the newly developed W-band GaN-HEMT power amplifier

Fujitsu succeeded in developing a power amplifier with the world's highest W-band output performance using this GaN-HEMT device with a proprietary structure (Figure 2). In order to successfully design a power amplifier with high output performance, Fujitsu precisely measured and modeled the characteristics of GaN-HEMT during high-frequency operation. Based on that, a circuit was designed where pairs of GaN-HEMTs were grouped together into compact, high-gain units with low power loss. In order to maximize the power from these units, GaN-HEMTs were connected in a series by the interstage circuit where the signal lines and the device layouts were carefully laid out. Using a model of these compact, high-gain units, Fujitsu conducted simulations to optimize the distributor and combiner matching circuits between the units, and their layouts and signal lines, resulting in a high-amplitude power amplifier (Figure 3). A prototype power amplifier had amplitude that multiplied its input by a factor of 80, producing 1.15 W of output power. Power output per transistor, a measure of power-amplifier performance, was 3.6 W per 1 mm of gate width, the highest in the world.

The newly developed power amplifier achieved a 1.8 times increase in power-amplifier output over previous W-band power amplifiers, with the world's highest output performance (Figure 4). This translates to an improvement of over 30% in terms of range for wireless communications at speeds of several gigabits per second.

Fujitsu plans to apply this power-amplifier technology to high-capacity long-range wireless communications, and to implement high-speed wireless communications systems that can be used for high-expediency temporary communications infrastructure for use during special events and when fiber-optic links have been broken in the event of disasters.

GaN power amplifier with world's highest output performance for W-band wireless transmissions
Figure 3: The compact, high-gain circuit that was used
GaN power amplifier with world's highest output performance for W-band wireless transmissions
Figure 4: Performance index of GaN-HEMT power amplifiers

Explore further: Fujitsu Develops Gallium-Nitride HEMT Amplifier Featuring World's Highest Output in the C-Ku Band

Related Stories

World's first GaN HEMT T/R module operating in the C-Ku band

June 6, 2011

Fujitsu Laboratories today announced that it has successfully developed the world's first transmitter/receiver (T/R) module using gallium-nitride (GaN)high electron mobility transistor (HEMT) technology that features an output ...

DOCOMO develops compact multi-band power amplifier

May 20, 2011

NTT DOCOMO today announced that it has developed a prototype power amplifier for six frequency bands between 1.5 GHz and 2.5 GHz in a form factor smaller than multiple single-band power amplifiers conventionally used to provide ...

Recommended for you

Understanding dynamic stall at high speeds

December 18, 2018

When a bird in flight lands, it performs a rapid pitch-up maneuver during the perching process to keep from overshooting the branch or telephone wire. In aerodynamics, that action produces a complex phenomenon known as dynamic ...

Pushing lithium ion batteries to the next performance level

December 13, 2018

Conventional lithium ion batteries, such as those widely used in smartphones and notebooks, have reached performance limits. Materials chemist Freddy Kleitz from the Faculty of Chemistry of the University of Vienna and international ...

Uber filed paperwork for IPO: report

December 8, 2018

Ride-share company Uber quietly filed paperwork this week for its initial public offering, the Wall Street Journal reported late Friday.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.