

Creating an electrical conduit using two insulators

January 14 2016

Scanning transmission electron micrograph (right) and Ti^3 + fraction $[Ti^3+/(Ti^3++Ti^4+)]$ extracted from electron energy loss spectra (left) for a $SrTiO_3/NdTiO_3/SrTiO_3$ heterojunction. Electron transfer from $NdTiO_3$ to $SrTiO_3$ results in Ti^4 + in the former and Ti^3 + in the latter. The electrons transferred to the $SrTiO_3$ are itinerant and constitute the highest density quasi-2D electron gas (3 × 1015 e-/cm²) ever achieved in a semiconductor superlattice.

Revolutionary new electronic devices, such as those required for next-

generation computers, require new and novel material systems. Scientists at the University of Minnesota and Pacific Northwest National Laboratory showed that combining two oxide materials in one particular orientation gives rise to a densely packed sheet of highly mobile electrons. The sheet is created when bound electrons jump across the junction of a neodymium-based oxide, NdTiO₃, to a material based on strontium, SrTiO₃, and become free. The density of these electrons—the highest ever observed at the junction of two materials—paves the way for a new class of electronic devices.

New kinds of <u>electronic devices</u> that exhibit novel functionalities are constantly being sought after to expand our technology base. One such device, which cannot be fabricated with existing electronic materials, is a high-frequency plasmonic field effect transistor. This device can turn a larger electronic signal on and off very fast, something not achievable with traditional semiconductor materials, such as silicon. The interface between NdTiO₃ and SrTiO₃ constitutes such a pathway, even though neither oxide conducts electricity as a pure material.

By depositing alternating, ultra-thin layers of NdTiO₃ and SrTiO₃ on a crystalline surface, and investigating their properties experimentally and theoretically, the researchers demonstrated that a very high density of mobile electrons can be generated and confined within the SrTiO₃ layers. The mobile electrons jump from the NdTiO₃ layers, where they cannot easily move, into the SrTiO₃ layers, where they are free to move.

Why do the electrons jump? A certain number must jump from NdTiO₃ into SrTiO₃ to stabilize the combined material system. The charges that stabilize the neodymium (Nd) and titanium (Ti) ions in NdTiO₃ cannot be reached without electron rearrangement, and part of this rearrangement involves some electrons jumping across the junction into the adjacent SrTiO₃ layers. However, when the NdTiO₃ layer reaches a certain thickness, it becomes energetically favorable for additional

loosely bound electrons in the NdTiO₃ layer to spill over into the adjacent SrTiO₃ layer, like water running over a waterfall. Once this happens, the SrTiO₃ layers become conducting channels with a high density of mobile electrons.

More information: Peng Xu et al. Quasi 2D Ultrahigh Carrier Density in a Complex Oxide Broken-Gap Heterojunction, *Advanced Materials Interfaces* (2015). DOI: 10.1002/admi.201500432

Provided by Pacific Northwest National Laboratory

Citation: Creating an electrical conduit using two insulators (2016, January 14) retrieved 20 March 2024 from https://phys.org/news/2016-01-electrical-conduit-insulators.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.