Small satellites to pave way for future space-borne weather observations

December 15, 2015, Colorado State University
A schematic illustration of the TEMPEST-D instrument. Credit: Sharmila Padmanabhan

A typical environmental monitoring satellite is a big deal, literally. These satellites contain thousands of kilograms of remote sensing equipment, hurtling through space, making critical observations.

Colorado State University researchers are creating the next generation of such monitoring satellites. They are doing it at a hundredth the size and weight scale, though, by using not just one, but a constellation of satellites.

Supported by an $8.2 million NASA award managed by the Earth Science Technology Office, a team led by Steven Reising, professor of electrical and computer engineering, is developing instrumentation for satellites about the size of a hardback dictionary, called CubeSats, that can observe, in real time, a storm as it grows and progresses. They will demonstrate their technology aboard a launch awarded by NASA earlier this year.

Their project is called the Temporal Experiment of Storms and Tropical Systems - Demonstrator, or TEMPEST-D.

TEMPEST-D will demonstrate the ability to monitor the atmosphere with . The team will demonstrate a radiometer aboard a 6U CubeSat (30 cm by 20 cm by 10 cm, or about 12 inches by 8 inches by 4 inches), and subsequently plan to deploy a constellation of satellites to study cloud processes.

V. "Chandra" Chandrasekar, professor of electrical and computer engineering, a co-investigator on the program, also works on the Global Precipitation Mission (GPM), an international network of satellites providing the state of the art in rainfall and snow monitoring.

Reising, Chandra, and co-investigator Christian Kummerow, professor of atmospheric science and director of CSU's Cooperative Institute for Research on the Atmosphere (CIRA), are working to demonstrate the utility of a single CubeSat now, then a constellation of them later, to conduct systematic and routine measurements over the globe.

Rapid overpasses of storms

Their long-term plan is to deploy a constellation of CubeSats that can perform rapid overpasses of developing storms, taking thousands of images inside clouds. The TEMPEST-D team includes key partners at NASA/Caltech's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL effort is led by Project Manager Todd Gaier.

"We are trying to improve our understanding of the processes in storms leading to rain, snow and other precipitation," Chandra said.

The biggest technical challenge? Squeezing many of the capabilities of a large into one that weighs just 8 kilograms (17.6 lbs.). Reising's team has spent over a decade working to miniaturize a microwave radiometer to fit inside a CubeSat.

"We will be able to observe storms in ways not yet possible with the current fleet of satellites in orbit," Reising said.

Explore further: Measuring ice particles and water vapor in the upper troposphere

Related Stories

NASA IMERG data Hurricane Sandra's heavy rainfall

December 1, 2015

Hurricane Sandra fizzled in the southern Gulf of California before moving ashore but on its journey north it was close enough to drop more than 2 feet of rainfall along part of the coast of western Mexico. Data from NASA's ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

Researchers make coldest quantum gas of molecules

February 21, 2019

JILA researchers have made a long-lived, record-cold gas of molecules that follow the wave patterns of quantum mechanics instead of the strictly particle nature of ordinary classical physics. The creation of this gas boosts ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.