Real-time tracking shows how batteries degrade

December 18, 2015, University College London

How disposable Lithium batteries degrade during normal use has been tracked in real-time by a UCL-led team using sophisticated 3D imaging, giving a new way to non-invasively monitor performance loss and guide the development of more effective commercial battery designs.

The team recently used the same technique to show how rechargeable Lithium-ion batteries fail when they are exposed to extreme levels of heat, but this is the first time the extent of day-to-day damage of disposable Lithium batteries has been shown.

The study follows calls from investigators in August 2015 for a safety review of all lithium battery-powered equipment on planes after a fire on board a grounded Boeing 787 Dreamliner at Heathrow Airport in 2013.

The fire was caused by the plane's disposable Lithium battery-powered emergency locator transmitter which sends out a radar signal to locate missing aircraft. The system is designed to work indefinitely until the aircraft is found but the results show the batteries may not be as resilient as they seem.

The study by UCL, Lund University, The European Synchrotron (ESRF), University of Manchester, Harwell Oxford, Oregon State University and the National Physical Laboratory, published in Advanced Science today, shows the internal structural damage caused to batteries working under normal conditions in real-time.

Using cutting edge X-ray imaging techniques at ESRF, the team tracked different types of wear and tear which cause and linked this wear to design features of the commercial battery.

First author, UCL PhD student Donal Finegan (UCL Chemical Engineering), said: "On the outside, the batteries look like they are doing their job normally but inside we saw the structure was undergoing great change. Electrical activity was high in some areas of the cell, whereas it was low in others; layers of electrode material separated and cracked. All of these changes in structure affect the flow of electricity and reduce the performance of the cell."

Real-time 3D images of active commercial Li/MnO2 disposable batteries were captured using X-ray computed tomography (CT) and advanced digital volume correlation software. The images formed cross-section time-lapse videos showing the damage occurring on the electrodes inside the battery in real-time.Corresponding author, Dr Paul Shearing (UCL Chemical Engineering), said: "Lithium disposable batteries are used for mission-critical systems where recharging is impractical, so understanding the safety and reliability of them is important, particularly given recent high-profile cases where batteries on aircraft have failed. We gained valuable insights that apply to a variety of commercial batteries using this system, showing an effective, non-invasive way for industry to monitor performance and improvements in commercial battery design."

Donal Finegan, added: "We effectively mapped the activity and strain on the material inside the battery which will help manufacturers predict how a particular will perform during operation and over time. We see this is a valuable tool for optimising the material used in commercial batteries, which will improve their resilience."

Explore further: Tracking exploding lithium-ion batteries in real-time (w/ Video)

Related Stories

US: Lithium batteries not necessarily unsafe

February 6, 2013

The use of lithium ion batteries to power aircraft systems isn't necessarily unsafe despite a battery fire in one Boeing 787 Dreamliner and smoke in another, but manufacturers need to build in reliable safeguards, the top ...

UK: 2013 Dreamliner fire caused by crossed wires

August 19, 2015

British aviation investigators reported Wednesday that a 2013 fire on a Boeing 787 Dreamliner started in a battery for the plane's emergency locator transmitter—a finding that triggered recommendations to improve safety ...

New battery technologies take on lithium-ion

July 22, 2015

Lithium-ion batteries remain the technology-of-choice for today's crop of electric cars, but challengers are revving up to try to upset the current order. An article in Chemical & Engineering News (C&EN), the weekly newsmagazine ...

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Race at the edge of the sun: Ions are faster than atoms

March 26, 2019

Scientists at the University of Göttingen, the Institut d'Astrophysique in Paris and the Istituto Ricerche Solari Locarno have observed that ions move faster than atoms in the gas streams of a solar prominence. The results ...

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.