Understanding the mechanism for generating electric current without energy consumption at room temperature

December 28, 2015
Understanding the mechanism for generating electric current without energy consumption at room temperature
Ferromagnetism mediated by Sb or Te atoms. Credit: Hiroshima University

A group of researchers in Japan and China identified the requirements for the development of new types of extremely low power consumption electric devices by studying Cr-doped (Sb, Bi)2Te3 thin films. This study has been reported in Nature Communications.

At extremely low temperatures, an electric current flows around the edge of the film without energy loss, and under no external magnetic field. This attractive phenomenon is due to the material's ferromagnetic properties; however, so far, it has been unclear how the material gains this property. For the first time, researchers have revealed the mechanism by which this occurs. "Hopefully, this achievement will lead to the creation of novel materials that operate at room temperature in the future," said Akio Kimura, a professor at Hiroshima University and a member of the research group.

Their achievement can be traced back to the discovery of the quantum Hall effect in the 1980's, where an electric current flows along an edge (or interface) without energy loss. However, this requires both a large external and an extremely low temperature. This is why practical applications have not been possible. Researchers believed that this problem could be overcome with new called topological insulators that have ferromagnetic properties such as those found in Cr-doped (Sb, Bi)2Te3.

A topological insulator, predicted in 2005 and first observed in 2007, is neither a metal nor an insulator, and has exotic properties. For example, an electric current is generated only at the surface or the edge of the material, while no electric current is generated inside it. It looks as if only the surface or the edge of the material has metallic properties, while on the inside it is an insulator.

At extremely low temperatures, a thin film made of Cr-doped (Sb, Bi)2Te3 shows a peculiar phenomenon. As the film itself is ferromagnetic, an electric current is spontaneously generated without an and electric current flows only around the edge of the film without . However, it was previously unknown as to why Cr-doped (Sb, Bi)2Te3 had such that allowed it to generate .

"That's why we selected the material as the object of our study," said Professor Kimura.

Because Cr is a magnetic element, a Cr atom is equivalent to an atomic-sized magnet. The N-S orientations of such atomic-sized magnets tend to be aligned in parallel by the interactions between the Cr . When the N-S orientations of Cr atoms in Cr-doped (Sb, Bi)2Te3 are aligned in parallel, the material exhibits ferromagnetism. However, the interatomic distances between the Cr atoms in the material are, in fact, too long to interact sufficiently to make the material ferromagnetic.

The group found that the non-magnetic element atoms, such as the Sb and Te atoms, mediate the magnetic interactions between Cr atoms and serve as the glue to fix the N-S orientations of Cr atoms that face one direction. In addition, the group expects that its finding will provide a way to increase the critical temperature for relevant device applications.

The experiments for this research were mainly conducted at SPring-8. "We would not have achieved perfect results without the facilities and the staff there. They devoted themselves to detecting the extremely subtle magnetism that the atoms of non-magnetic elements exhibit with extremely high precision. I greatly appreciate their efforts," Kimura said.

Explore further: Spin current on topological insulator detected electrically at room temperature

More information: Mao Ye et al. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3, Nature Communications (2015). DOI: 10.1038/ncomms9913

Related Stories

Choreographing the dance of electrons

December 24, 2015

Scientists at the National University of Singapore (NUS) have demonstrated a new way of controlling electrons by confining them in a device made out of atomically thin materials, and applying external electric and magnetic ...

Giant enhancement of magnetic effect will benefit spintronics

December 21, 2015

(Phys.org)—Researchers have demonstrated that coating a cobalt film in graphene doubles the film's perpendicular magnetic anisotropy (PMA), so that it reaches a value 20 times higher than that of traditional metallic cobalt/platinum ...

Recommended for you

Magnetic recording with light and no heat on garnet

January 19, 2017

A strong, short light pulse can record data on a magnetic layer of yttrium iron garnet doped with Co-ions. This was discovered by researchers from Radboud University in the Netherlands and Bialystok University in Poland. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.