Future ultra-fast high power lasers will deliver unprecedented accelerating power and efficiency

December 1, 2015

Few technologies have the power that particle accelerator technology has to touch upon such a broad range of applications at the many frontiers of modern science. Today, thanks to improvements in laser technology, a new generation of accelerators could soon emerge to replace accelerators relying on radio frequencies.

In this new special issue, the journal EPJ Special Topics explores the requirements necessary to make such laser accelerators a reality, by presenting the work of the International Coherent Amplification Network (ICAN) research collaboration. Potential applications include future colliders, solutions for vacuum physics, design of Higgs-particle factories, creation of sources of high-flux protons and of neutrons, among others. Further, such accelerators open the door to solutions in nuclear pharmacology and proton therapy as well as orbital debris remediation.

The idea for laser pulse-based accelerators dates back to 1979. Picture a laser pulse in a plasma made up of an ionised gas combining positive ions and electrons. It leaves a wake in which electrons are violently accelerated. Accelerators of the future could exploit this concept to accelerate particles over much shorter distances with greater power levels. They will also have an unprecedented electrical-to-optical power conversion efficiency greater than 30%—compared to much less than 1% with RF .

In this special issue, ICAN experts explore ways of achieving power generation reaching the 100 kilowatts to megawatt level instead of the 50 watts current technology offers. This greater than average is achieved thanks to the much higher frequency repetition rate of the pulse in CAN systems. Others focus on improving the acceleration efficiency limit by reaching a frequency over 10 kilohertz; investigate improving the capability to synchronise a large number of fibre amplifiers or look into improving the quality of accelerated beams—be they spatial and temporal.

Explore further: New discovery could enable portable particle accelerators

More information: Gérard Mourou. Science and applications of the coherent amplifying network (CAN) laser, The European Physical Journal Special Topics (2015). DOI: 10.1140/epjst/e2015-02561-1

Related Stories

New discovery could enable portable particle accelerators

November 5, 2015

Conventional particle accelerators are typically big machines that occupy a lot of space. Even at more modest energies, such as that used for cancer therapy and medical imaging, accelerators need large rooms to accommodate ...

A path toward more powerful tabletop accelerators

May 28, 2014

Making a tabletop particle accelerator just got easier. A new study shows that certain requirements for the lasers used in an emerging type of small-area particle accelerator can be significantly relaxed. Researchers hope ...

Recommended for you

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.