Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

December 22, 2015, Washington University in St. Louis
Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years
The Chinese lunar rover, Yutu, photographed by its lander Chang'e-3, after the lander touched down in Mare Imbrium, a giant impact basin that had been filled by successive lava flows. Credit: CNAS/CLEP

In 2013, Chang'e-3, an unmanned lunar mission, touched down on the northern part of the Imbrium basin, one of the most prominent of the lava-filled impact basins visible from Earth.

It was a beautiful , said Bradley L. Jolliff, PhD, the Scott Rudolph Professor of Earth and Planetary Sciences at Washington University in St. Louis, who is a participant in an educational collaboration that helped analyze Chang'e-3 mission data. The lander touched down on a smooth flood basalt plain next to a relatively fresh impact crater (now officially named the Zi Wei crater) that had conveniently excavated bedrock from below the regolith for the Yutu rover to study.

Since the Apollo program ended, American lunar exploration has been conducted mainly from orbit. But orbital sensors primarily detect the regolith (the ground-up surface layer of fragmented rock) that blankets the Moon, and the regolith is typically mixed and difficult to interpret.

Because Chang'e-3 landed on a comparatively young lava flow, the regolith layer was thin and not mixed with debris from elsewhere. Thus it closely resembled the composition of the underlying volcanic bedrock. This characteristic made the landing site an ideal location to compare in situ analysis with compositional information detected by orbiting satellites.

"We now have 'ground truth' for our remote sensing, a well-characterized sample in a key location," Jolliff said. "We see the same signal from orbit in other places, so we now know that those other places probably have similar basalts."

The basalts at the Chang'e-3 landing site also turned out to be unlike any returned by the Apollo and Luna sample return missions.

"The diversity tells us that the Moon's upper mantle is much less uniform in composition than Earth's," Jolliff said. "And correlating chemistry with age, we can see how the Moon's volcanism changed over time."

Two partnerships were involved in the collection and analysis of this data, published in the journal Nature Communications Dec. 22. Scientists from a number of Chinese institutions involved with the Chang'e-3 mission formed one partnership; the other was a long-standing educational partnership between Shandong University in Weihai, China, and Washington University in St. Louis.

A mineralogical mystery

The Moon, thought to have been created by the collision of a Mars-sized body with the Earth, began as a molten or partially molten body that separated as it cooled into a crust, mantle and core. But the buildup of heat from the decay of radioactive elements in the interior then remelted parts of the mantle, which began to erupt onto the surface some 500 million years after the Moon's formation, pooling in impact craters and basins to form the maria, most of which are on the side of the Moon facing the Earth.

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years
Chang'e-3 landing site is indicated with a white square in this lunar map, a mosaic made with the Lunar Reconnaissance Orbiter's Wide Angle Camera. The landing sites of the Apollo missions are in red. Credit: NASA/GSFC/ASU

The American Apollo (1969-1972) and Russian Luna (1970-1976) missions sampled basalts from the period of peak volcanism that occurred between 3 and 4 billion years ago. But the Imbrium basin, where Chang'e-3 landed, contains some of the younger flows—3 billion years old or slightly less.

The basalts returned by the Apollo and Luna missions had either a high titanium content or low to very low titanium; intermediate values were missing. But measurements made by an alpha-particle X-ray spectrometer and a near-infrared hyperspectral imager aboard the Yutu rover indicated that the basalts at the Chang'e-3 landing site are intermediate in titanium, as well as rich in iron, said Zongcheng Ling, PhD, associate professor in the School of Space Science and Physics at Shandong University in Weihai, and first author of the paper.

Titanium is especially useful in mapping and understanding volcanism on the Moon because it varies so much in concentration, from less than 1 weight percent TiO2 to over15 percent. This variation reflects significant differences in the mantle source regions that derive from the time when the early magma ocean first solidified.

Minerals crystallize from basaltic magma in a certain order, explained Alian Wang, PhD, research professor in earth and planetary sciences in Arts & Sciences at Washington University. Typically, the first to crystallize are two magnesium- and iron-rich minerals (olivine and pyroxene) that are both a little denser than the magma, and sink down through it, then a mineral (plagioclase feldspar), that is less dense and floats to the surface. This process of separation by crystallization led to the formation of the Moon's mantle and crust as the magma ocean cooled.

The titanium ended up in a mineral called ilmenite (FeTiO3) that typically doesn't crystallize until a very late stage, when perhaps only 5 percent of the original melt remains. When it finally crystallized, the ilmenite-rich material, which is also dense, sank into the mantle, forming areas of Ti enrichment.

"The variable titanium distribution on the lunar surface suggests that the Moon's interior was not homogenized," Jolliff said. "We're still trying to figure out exactly how this happened. Possibly there were big impacts during the magma ocean stage that disrupted the mantle's formation."

Another clue to the Moon's past

The story has another twist that also underscores the importance of checking orbital data against ground truth. The remote sensing data for Chang'e-3's landing site showed that it was rich in olivine as well as titanium.

Four views of the Mare Imbrium basin and the Chang'e-3 landing site demonstrate how different the Moon looks to different types of remote sensing, underscoring the need for ground truth to calibrate the orbital observations. Credit: NASA/LPI

That doesn't make sense, Wang said, because olivine usually crystallizes early and the titanium-rich ilmenite crystallizes late. Finding a rock that is rich in both is a bit strange.

But Yutu solved this mystery as well. In olivine, silicon is paired with either magnesium or iron but the ratio of those two elements is quite variable in different forms of the mineral. The early-forming olivine would be magnesium rich, while the olivine detected by Yutu has a composition that ranges from intermediate in iron to iron-rich.

"That makes more sense," Jolliff said, "because iron-enriched olivine and ilmenite are more likely to occur together.

"You still have to explain how you get to an olivine-rich and ilmenite-rich rock. One way to do that would be to mix, or hybridize, two different sources," he said.

The scientists infer that late in the magma-ocean crystallization, iron-rich pyroxene and ilmenite, which formed late and at the crust-mantle boundary, might have begun to sink. and early-formed magnesium-rich olivine might have begun to rise. As this occurred, the two minerals might have mixed and hybridized.

"Given these data, that is our interpretation," Jolliff said.

In any case, it is clear that these newly characterized basalts reveal a more diverse Moon than the one that emerged from studies following the Apollo and Luna missions. Remote sensing suggests that there are even younger and even more diverse basalts on the Moon, waiting for future robotic or human explorers to investigate, Jolliff said.

Explore further: Immobilized Yutu rover still providing valuable lunar data (Update)

More information: Nature Communications ,

Related Stories

A wet Moon

March 26, 2014

The Moon's status as a "dry" rock in space has long been questioned. Competing theories abound as to the source of the H20 in the lunar soil, including delivery of water to the Moon by comets.

Recommended for you


Adjust slider to filter visible comments by rank

Display comments: newest first

2.5 / 5 (8) Dec 27, 2015
This is all nice and all, but now that the US has legalized taking from space whatever you can get your hands on is the US going to stop other countries that may get there and take the best and closest offerings first? We now have a new problem, caused by the same old problem, people behaving greedy because they don't accept the truth that all life is most important. They are all, pretty much, failed treaties. And what is to come of all of the people who had no part in allowing corporations and governments owned by individuals to ignore treaties and the intension of them? Did they rise up and oppose such behavior when it was happing through reasonable means? Did they do enough? Is the something they did choosing to choose to do nothing? Would you want your government trusting another government that could and may wipe your loved ones and heritage in an instant? So many possible things going on or that could go on. Anyone keeping a complete tab? :P
3.7 / 5 (3) Dec 28, 2015
Well, it's still not easy to go into space and space exploitation is not done right now. Also, resources in space are mostly unknown and many and very far between. They are also quite expensive to obtain (going from say asteroid speed to Earth speed requires a lot of energy) and mostly unfeasible. There is no way they are going to be taken away by some countries any time soon.
2.5 / 5 (8) Dec 28, 2015

I see can why you feel that way about, but I think there are some areas of expertise that you may not be aware of at first glance. I did work for Dennis Tito years back. I also wrote code that was used to cut list the Phoenix lander. My girlfriend's daughter had a substantial hand in creating the first biosphere to Mars. I am just saying that it was given to me to have these available and I have learned quite a bit since then. I don't want to see a sphere floating in space with 1 trillion animals in it where people go up and shoot them with machine guns for fun. Many of the people with degrees commenting have no spoken problem with that idea at all. Their words and actions indicated that is exactly what they would do. A evil black hole made by people with PhD.s who never, ever, yield to the truth in conversation. The Ego hole and the lives it takes. 3D replication and fabrication is easy. Working with solids is different. But we solved that too. Orientation from video games.
2.7 / 5 (7) Dec 28, 2015
Orientation from video games is another way of saying 3D matrices. For the sake of clarity, maybe you or others, the math to move points from one place in 3-dimensional x y z space (think of a 3D bar graph, like the 2D paper with a z vector in both directions), 'the math formulas are so well known that shapes, not just points, can be moved and rotated to other locations, not just with computer code, but with the ability to do that math in a hard wired dedicated function on a chip. Knowing basic math and getting a $1.50 chip with a co-processor enables anyone to do it, plus it comes with a processor to program, in even Basic. When Dennis says he wants to do 3D replicating from materials on asteroids, I really believe he can do it from my personal understanding.
3.7 / 5 (9) Dec 28, 2015
How many times must we tell/remind you plants are living beings that experience a type of pain and a diet of only plants requires much more killing innocent beings. 1 cow can feed me for a year. How many lives do you take each year?
2.3 / 5 (3) Jan 07, 2016
Couldn't we get an automatic posting filter to screen out those that indulge in ego-spew? We don't give a shit about your CV, David. In here you're another 1-point-something-crank.

What we need is long term data on human physiology and things like decades of exposure to the radiation at various levels. I say we take all the lunar landing deniers and put them to a better use than they'll ever make of their lives.
1 / 5 (2) Jan 07, 2016

5 /5 (1) 4 hours ago
Couldn't we get an automatic posting filter to screen out those that indulge in ego-spew? We don't give a shit about your CV, David. In here you're another 1-point-something-crank.

Hear, hear!!! Or should that be, "Here, here!"? You can test it on gkam and steelwolf and otto.


3.5 /5 (8) Dec 28, 2015
How many times must we tell/remind you plants are living beings that experience a type of pain and a diet of only plants requires much more killing innocent beings.

THIS, from a guy who's always bellowing, "Citation?!?" Gawd the hypocrisy runs deep on this site.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.