Wi-FM listens to FM signals to determine best times to send and receive data

November 9, 2015 by Amanda Morris, Northwestern University

One minute your wireless Internet is working fine. The next minute, it takes an infuriatingly slow five seconds to load a single Web page. You paid for the fastest Internet speed available but during these all-too-frequent times, it seems like the connection barely works at all.

"Most people think it's a mystery," said Aleksandar Kuzmanovic, associate professor of electrical engineering and computer science at Northwestern University's McCormick School of Engineering. "They get upset at their routers. But what's really happening is that your neighbor is watching Netflix."

Most people don't realize how much their neighbors' Internet networks interfere with their own, heavily affecting speed and performance. Unless a home is located in the middle of nowhere, it is likely that neighboring homes' Wi-Fi networks will bump into each other and prevent data from getting through. This is particularly true in large, urban apartment buildings where many people reside within a smaller area.

Kuzmanovic and his PhD students Marcel Flores and Uri Klarman have found that problems caused by competing networks can be mitigated by using an already-existing, extremely cheap medium: FM radio. Flores will present this work Tuesday, November 10 at the 23rd annual IEEE International Conference on Network Protocols in San Francisco.

"Our are completely separate from each other," said Flores, the lead author of the study. "They don't have any way to talk to each other even though they are all approximately in the same place. We tried to think about ways in which devices in the same place could implicitly communicate. FM is everywhere."

Called "Wi-FM," the team's technique enables existing wireless networks to communicate through ambient FM radio signals. The team agreed that using FM was attractive for several reasons. For one, most smartphones and mobile devices are already manufactured with an FM chip hidden inside. FM is also able to pass through walls and buildings without being obstructed, so it's very reliable. Minor upgrades to software would allow devices to take advantage of Wi-FM.

Using Wi-FM prevents a person's network data from fighting with his or her neighbor's data. When network data are sent at the same time, they bump into each other. Then both data packets back off and stop moving toward their destinations. This is what causes those unexpectedly slow Internet speeds. Wi-FM works by allowing the device to "listen" to the network and select the quietest time slots according to FM radio signals.

"It will listen and send data when the network is quietest," Flores said. "It can send its data right away without running into someone else or spending any time backing off. That's where the penalty happens that wastes the most time."

This is a problem that Klarman knows all too well. Living in a large, urban apartment building with more than 30 different networks, he regularly experiences slow Internet speeds.

"Even if I configure my Internet to choose a channel that is least likely to overlap with my neighbors, the problem cannot be avoided," Klarman said. "You can't find a quiet channel when there are 30 other networks in the same building. My speed is 10 percent of what it should be."

Wi-FM identifies the usage patterns of other networks in order to detect times with lightest and heaviest traffic, helping to harmonize Wi-Fi signals that are transmitting on the same channel. And it can adapt as those patterns change with very little effort.

"Our system can solve these problems without involving real people," Kuzmanovic said. "Because are you going to knock on 30 doors to coordinate your wireless with your neighbors? That is a huge management problem that we are able to bypass."

Explore further: New algorithm resolves Wi-Fi interference problems

More information: Study: networks.cs.northwestern.edu/p … /icnp2015-flores.pdf

Related Stories

New algorithm resolves Wi-Fi interference problems

January 23, 2015

To overcome the problem of interference between wireless networks, a doctoral student at EPFL has developed an algorithm that automatically selects the best frequency band according to the usage of neighboring networks. This ...

New Wi-Fi antenna enhances wireless coverage

June 1, 2015

Researchers at Universiti Teknologi MARA in Malaysia have succeeded in using ionised gas in a common fluorescent light tube as an antenna for a Wi-Fi Internet router.

Making GPS-like localization work indoors

June 26, 2012

You’re in a hurry. You’ve rushed to the nearest shopping mall during your lunch hour, looking for one item, one item only. It’s a five-minute task, except for finding the store with the right item—and ...

Wi-fi will soon reach its limits: Dutch study

June 11, 2012

Wi-Fi, the well-known standard for wireless internet, is reaching its technical limits. Its efficiency drops significantly in busy surroundings where many different networks and numerous wireless internet enabled devices ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.