We've got the beat: Astronomers discover a distant galaxy with a pulse

November 16, 2015
We've got the beat: Astronomers discover a distant galaxy with a pulse
Hubble Space Telescope photograph of the galaxy M87, which is 50 million light years from Earth. Credit: NASA/ESA

Astronomers at Yale and Harvard have found a galaxy with a heartbeat—and they've taken its pulse.

It is the first time scientists have measured the effect that pulsating, older red have on the light of their surrounding galaxy. The findings are published in the Nov. 16 of the journal Nature.

"We tend to think of galaxies as steady beacons in the sky, but they are actually 'shimmering' due to all the giant, pulsating stars in them," said Pieter van Dokkum, the Sol Goldman Professor and chair of astronomy at Yale, and co-author of the study.

Later in life, stars like our Sun undergo significant changes. They become very bright and swell up to an enormous size, swallowing any planets within a radius roughly equivalent to Earth's distance from the Sun. Near the end of their lifetime, they begin to pulsate, increasing and decreasing their brightness every few hundred days. In our Milky Way galaxy, many stars are known to be in this phase.

Until now, no one had considered the effects of these stars on the light coming from more distant galaxies. In distant galaxies the light of each pulsating star is mixed with the light of many more stars that do not vary in brightness.

"We realized that these stars are so bright and their pulsations so strong that they are difficult to hide," said Charlie Conroy, an assistant professor at Harvard, who led the research. "We decided to see if the pulsations of these stars could be detected even if we could not separate their light from the sea of unchanging stars that are their neighbors."

An image of the pulsating star T Leporis, compared to the size of the orbit of the Earth around the Sun. T. Leporis is 500 light years away. Huge stars like this are causing the 'heartbeat' of the galaxy M87, 50 million light years away. Credit: ESO/J.-B. Le Bouquin et al.

The researchers used a unique series of images of the galaxy M87, in the constellation Virgo, taken with the Hubble Space Telescope over the course of three months in 2006. They quickly found what they were looking for: 25% of the pixels in the Hubble image of M87 go up and down in brightness, as if the galaxy had a heartbeat. The mean pulse of the stars in M87 is about one beat every 270 days.

The next step, according to the researchers, is to take the pulse of other galaxies. "Our models suggest that the pulsations will be stronger in younger galaxies, and that's something we'd love to test," said co-author Jieun Choi, a Harvard graduate student.

The monstrous elliptical galaxy M87, located 53 million light-years from Earth is the dominant galaxy at the center of the neighboring Virgo cluster of galaxies. Astronomers have measured the 'heartbeats' of stars within M87 and used that data to determine the galaxy's age in a new way. This photograph was taken with the Hubble Space Telescope's Advanced Camera for Surveys instrument. Credit: NASA, ESA, and the Hubble Heritage Team

Of course, even the older galaxies will continue to beat for a while longer. "Cardiac arrest is not expected until a trillion years from now," van Dokkum said. "That's a hundred times longer than the age of the universe."

Explore further: Hubble looks in on a galactic nursery

More information: Ubiquitous time variability of integrated stellar populations, Nature, DOI: 10.1038/nature15731

Related Stories

Hubble looks in on a galactic nursery

July 27, 2015

This dramatic image shows the NASA/ESA Hubble Space Telescope's view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an ...

Image: Hubble captures galaxy PGC 18431

June 15, 2015

There are many galaxies in the universe and although there is plenty of room, they tend to stick together. The Milky Way, for example, is part of a large gathering of more than fifty galaxies known as the Local Group. Galaxy ...

Image: Hubble sees elegant spiral hiding a hungry monster

October 19, 2015

NGC 4639 is a beautiful example of a type of galaxy known as a barred spiral. It lies over 70 million light-years away in the constellation of Virgo and is one of about 1,500 galaxies that make up the Virgo Cluster.

Hubble explores the mysteries of UGC 8201

March 19, 2015

The galaxy UGC 8201, captured here by the NASA/ESA Hubble Space Telescope, is a dwarf irregular galaxy, so called because of its small size and chaotic structure. It lies just under 15 million light-years away from us in ...

A shy galactic neighbor

September 16, 2015

The Sculptor Dwarf Galaxy, pictured in this new image from the Wide Field Imager camera, installed on the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory, is a close neighbour of our galaxy, the Milky Way. Despite ...

Recommended for you

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

plasmasrevenge
1 / 5 (2) Nov 16, 2015
Why is there a coherent pulse at all? My expectation is that if the individual stellar pulses are not actually synced to one another through some mechanism, then this should be noise.
jonesdave
5 / 5 (3) Nov 16, 2015
Why is there a coherent pulse at all? My expectation is that if the individual stellar pulses are not actually synced to one another through some mechanism, then this should be noise.


And your paper showing these resuls? Is where? More pseudocr*p, ladies and gentlemen.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.