Surprisingly complex fingerprint of PAH molecules in space

November 17, 2015, Radboud University

Astronomers searching for interstellar PAH-molecules interpret their data incorrectly. This is concluded by researchers from the University of Amsterdam (UvA), the Leiden Observatory, the Radboud University and NASA Ames Research Center. In a joint publication in the Astrophysical Journal they show that the infrared fingerprint of PAHs (polycyclic aromatic hydrocarbons) is far more complex than what was assumed thus far.

PAHs constitute a group of numerous organic molecules. As known to most people, they have a bad reputation as they are carcinogenic byproducts of for example combustion and grilled meat. However, PAHs are also found in many places in the Universe. For astronomers, they are important as they provide clues on how matter is formed in interstellar space and how it eventually evolves to form stars and planets.

The characteristic infrared radiation emitted by interstellar PAHs is a powerful means to identify these molecules. However, distinguishing the radiation emitted by PAHs from other radiation sources is far from trivial. Astronomical data are analyzed by comparison with databases containing a large body of PAH infrared spectra (the fingerprints). These spectra are based on theoretical calculations and laboratory experiments.

Complex fingerprint

To date, astronomers have not been able to identify individual PAH molecules. The current experiments, that were done at the UvA, may now change this. The researchers studied the molecule naphthalene, a relatively small PAH, using advanced laser spectroscopic methods under the same conditions as present in interstellar environments.

"According to textbook knowledge, we would have expected to find maybe three absorption bands in this range of the spectrum", says Jos Oomens, who works at the FELIX Laboratory of Radboud University. "Therefore, we were pretty surprised to see a spectrum with about twenty fairly strong bands. This means that the standard theoretical models we use are far too simple."

Quantum-chemical calculations

To rationalize these observations, the researchers developed a novel quantum-chemical approach to calculate and predict PAH spectra. The improved methods will provide astrochemists with considerably better fingerprints for an extensive series of PAH molecules, allowing for a much more detailed analysis of astronomical data.

A scenario which is now coming within reach is one in which astronomical observations can be translated directly into specific PAH compositions. Dr. Annemieke Petrignani, experimental astrophysicist at the Leiden Observatory, is very enthusiastic. Earlier this year she received a VIDI grant from NWO to determine the composition, sizes and shapes of interstellar PAHs, working in collaboration with researchers at the UvA and Radboud University. Petrignani: "PAHs are 'hot', there is a tremendous need for characteristic spectral fingerprints of these molecules and to understand these fingerprints at the most fundamental level."

Explore further: A new approach towards solving mysteries of the interstellar medium

More information: High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: the realm of anharmonicity. Elena Maltseva, Annemieke Petrignani, Alessandra Candian, Cameron J. Mackie, Xinchuan Huang, Timothy J. Lee, Alexander G. G. M. Tielens, Jos Oomens & Wybren Jan Buma. Astrophys. J., 2015, DOI: 10.1088/0004-637X/814/1/

Related Stories

Molecular striptease explains Buckyballs in space

December 9, 2014

Scientists from Leiden University have shown in the laboratory how Buckyballs - molecular soccerballs - form in space. The experiments are special, as these are based on a new chemical concept - top-down, from big to small ...

NASA develops key to cosmic carbon's molecular evolution

May 14, 2013

(Phys.org) —Scientists at NASA's Ames Research Center, Moffett Field, Calif., now have the capability to systematically investigate the molecular evolution of cosmic carbon. For the first time, these scientists are able ...

NASA scientists on the trail of mystery molecules

May 25, 2011

(PhysOrg.com) -- Space scientists working to solve one cosmic mystery at NASA's Ames Research Center, Moffett Field, Calif., now have the capability to better understand unidentified matter in deep space. Using a new facility ...

NASA Reveals Key to Unlock Mysterious Red Glow in Space

August 2, 2010

(PhysOrg.com) -- NASA scientists created a unique collection of polycyclic aromatic hydrocarbon (PAH) spectra to interpret mysterious emission from space. Because PAHs are a major product of combustion, remain in the environment, ...

Recommended for you

Exploring planetary plasma environments from your laptop

June 15, 2018

A new database of plasma simulations, combined with observational data and powerful visualisation tools, is providing planetary scientists with an unprecedented way to explore some of the Solar System's most interesting plasma ...

NASA encounters the perfect storm for science

June 14, 2018

One of the thickest dust storms ever observed on Mars has been spreading for the past week and a half. The storm has caused NASA's Opportunity rover to suspend science operations, but also offers a window for four other spacecraft ...

The most distant radio galaxy discovered

June 14, 2018

An international team of astronomers has detected a new high-redshift radio galaxy (HzRG). The newly identified HzRG, designated TGSS1530, was found at a redshift of 5.72, meaning that it is the most distant radio galaxy ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.