

What problems will AI solve in future? An
old British gameshow can help explain

November 4 2015, by Ian Miguel And Patrick Prosser

It is rocket science: constraint programming helped organise Philea landing EPA

The Crystal Maze, the popular UK television show from the early 1990s,
included a puzzle that is very useful for explaining one of the main
conundrums in artificial intelligence. The puzzle appeared a few times in
the show's Futuristic Zone, one of four zones in which a team of six
contestants sought to win "time crystals" that bought time to win prizes

1/8

http://www.imdb.com/title/tt0098774/
http://crystalmaze.marcgerrish.com
http://crystalmaze.marcgerrish.com/games/noconsecutives.htm

at the Crystal Dome at the end of the show.

Never solved in the two-minute time frame, the puzzle was based on a
network of connected red circles (see clip below). On the wall was
written a clue: "No consecutive letters in adjacent circles". The letters A
to H were printed on circular plates which could be fitted onto each
circle.

So what is the right approach? We might start by considering which
circles are hardest to label. With a little thought, you might choose the
two middle circles, since they have the most connections. Now consider
which letters might best be put on them: A and H are natural candidates
because they each have only one neighbour (B and G, respectively). We
might put them into the grid like this:

2/8

We can now do some deduction to eliminate incompatible possibilities
for the other circles. For example the top-left circle is connected to both
of the central circles. Since no consecutive letters can appear in
connected circles, it can't now contain B or G. Similar reasoning can be
applied to the top-right, bottom-left, and bottom-right circles:

The leftmost and rightmost circles have to be treated differently, since
each is only adjacent to one central circle. On the left we can rule out B,

3/8

and on the right we can rule out G:

Look carefully at the remaining options and only the leftmost circle still
has G as a possibility, and only the rightmost circle has B. Once we put
them in place, we can remove further possibilities from the adjacent
circles:

4/8

It is now time to make another guess. It seems reasonable to start with
the top-left circle and try its first possibility: C. This allows us to rule out
D from the adjacent circle and C from the bottom left. If we now guess
E for the top-right circle, the bottom-left circle has only one possibility
left, D, which leaves just F for the bottom-right circle. We have a
solution:

5/8

Decisions, decisions

This puzzle is an example of a much wider class of decision-making
problems that arise in our lives, such as rostering decisions in a hospital
or factory, scheduling buses or trains, or designing medical experiments.
To save us the aggravation of coming up with the best solutions, one of
the challenges for artificial intelligence is to develop a general way of
representing and reasoning about them.

One method is known as the constraint satisfaction problem. Just like
our Crystal Maze puzzle, problems that fit this model involve a set of
required decisions ("cover each circle with a plate"); a fixed set of
possibilities ("use the plates from A to H provided"); and a set of

6/8

https://phys.org/tags/artificial+intelligence/

constraints that allow only certain combinations of possibilities ("no
consecutive letters in adjacent circles"). If you input the requirements
for your particular problem into a piece of software known as a
constraint solver, it can then try to solve it. It will do this in much the
same way as we solved the puzzle: it combines guessing (we call this
"search") with deduction, ruling out possibilities that cannot be part of a
solution based on the decisions made so far.

The greatest challenge for programmers in this field is that as you
increase the size of the input problem, it quickly becomes much harder
to find solutions. This is directly related to how the software "guesses"
the answer. Although our guesses proved correct in our simple puzzle, in
AI they can often lead us down blind alleys. With large problems there
can be a vast number of possibilities and a similarly vast number of dead
ends.

￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼One key
question is whether there is some way of reaching solutions without
going down these alleys. As yet, we don't know. This directly relates to
one of the most important open questions in computer science, the P vs
NP problem, for which the Clay Mathematics Institute in the US is
offering Us$1m (£657,000) for a solution. It essentially asks whether
every problem whose answer can be checked quickly by a computer can
also be quickly solved by a computer.

Until someone solves it, the prevailing view is that it cannot. If so, our
software does have to search through all the possible guesses, in which
case we need to make it as efficient as possible. One important factor
here is the search strategy – which decision we tell the computer to focus
on next and which value we assign to it. Also very important is what we
decide are the requirements for the particular problem. Mapping our
puzzle to a constraint satisfaction template was straightforward, but in
real life there are often many different options. Choosing the right

7/8

http://www.constraintsolving.com
http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem

strategy and model can be the difference between finding a quick
solution and failing in any practical amount of time.

We have now reached the stage where the latest constraint-solving
software can solve far more complex practical problems than, say, ten
years ago. It was used to plan the scientific activities of the Philae comet
lander last year, for instance. It also offers a better way of organising
evacuation schedules for large-scale disasters.

Constraint solving has found most success with scheduling problems, but
there are other similar AI tools that are more useful for other types of
questions. We won't go into them here, but they include the likes of
propositional satisfiability, evolutionary algorithms and mathematical
programming techniques. The job of specialists is to analyse a problem,
identify which combination of tools will be the most successful for a
particular case, and put together a bespoke piece of software. Once
computers can do this analysis and identification, hopefully only a few
years in the future, we will have made a huge leap forward. Meanwhile,
the battle to make each of these tools as powerful as possible continues.

This story is published courtesy of The Conversation (under Creative
Commons-Attribution/No derivatives).

Source: The Conversation

Citation: What problems will AI solve in future? An old British gameshow can help explain
(2015, November 4) retrieved 26 April 2024 from https://phys.org/news/2015-11-problems-ai-
future-british-gameshow.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

8/8

http://link.springer.com/article/10.1007%2Fs10601-014-9169-3#/page-1
http://arxiv.org/abs/1505.02487
http://www.inf.ed.ac.uk/teaching/courses/propm/papers/main_lan1.pdf
http://www.eudoxus.com/lp-training/1-what-is-mathematical-programming
http://www.eudoxus.com/lp-training/1-what-is-mathematical-programming
http://theconversation.edu.au/
https://phys.org/news/2015-11-problems-ai-future-british-gameshow.html
https://phys.org/news/2015-11-problems-ai-future-british-gameshow.html
http://www.tcpdf.org

