Nanobodies from camels enable the study of organ growth

November 9, 2015, University of Basel
Drosophila wing size control depends on the spreading of the Dpp morphogen. Credit: University of Basel, Biozentrum

Researchers at the Biozentrum of the University of Basel have developed a new technique using nanobodies. Employing the so-called "Morphotrap", the distribution of the morphogen Dpp, which plays an important role in wing development, could be selectively manipulated and analyzed for the first time in the fruit fly. In the future, this tool may be applied for many further investigations of organ growth. The results of the study have been published in the current issue of Nature.

The two basic processes that control organ development are the regulation of and of the spatial pattern. The research group of Prof. Markus Affolter at the Biozentrum, University of Basel, has now developed a method named "Morphotrap" to study wing development in the fruit fly.

Their results demonstrate that the signaling molecule Dpp, a so-called morphogen, influences growth in the center of the wing imaginal disc but not in the peripheral regions. It is the first time that an anti-GFP nanobody has been successfully employed in such an investigation. This tool also holds promise for future studies on organ development.

The new method "Morphotrap": Nanobodies to study growth

Nanobodies are small antibody fragments derived from camels. They enable the research team of Markus Affolter to manipulate molecules in the living organism. The so-called "Morphotrap" method employs anti-GFP nanobodies. Using these Nanobodies, the functions of GFP-tagged proteins in living organisms can be studied faster and more effectively than by conventional methods.

"These anti-GFP nanobodies inhibit the dispersal of the morphogen Dpp at different locations in the wing. Therefore they allow us to identify the influence of Dpp spreading on wing growth," explains Stefan Harmansa, the first author of the study.

Morphogen Dpp regulates growth in the middle of the imaginal disc

To determine the influence of the morphogen Decapentaplegic (Dpp) in more detail, the Affolter group examined the wing disc of the fruit fly, called the imaginal disc. This is the precursor tissue of the wing of the adult fly and serves as a model for studies on .

"Our findings demonstrate that the morphogen Dpp only affects growth in the center of the imaginal disc. Growth continues in the periphery even when we fully block Dpp dispersal into this regions," explains Harmansa. "Now, by employing anti GFP nanobodies, we have been able to show to which extent the morphogen Dpp determines the size and consequently we could disprove one of the two predominant theories in this field," says Harmansa.

The fact that anti GFP-nanobodies can successfully be applied for research in complex living organism is a great achievement. Affolter also plans to apply this technique in future research: "In a next step, we will investigate at what time in development Dpp acts to control central growth. The correlation between the spatial and temporal influence of Dpp will provide new insights into organ growth and may uncover possible causes of organ malformation," says Affolter.

Explore further: Regulatory process for organ scaling discovered

More information: Dpp spreading is required for medial but not for lateral wing disc growth, DOI: 10.1038/nature15712

Related Stories

Regulatory process for organ scaling discovered

October 25, 2011

A new study has shed light on the process by which fruit flies develop with their body proportions remaining constant. The study, conducted by the research group of Professor Markus Affolter at the Biozentrum of the University ...

Scale models

August 22, 2011

Weizmann Institute scientists have added a significant piece to the puzzle of scaling – how patterns stay in sync with size as an embryo or organism grows and develops. In a new study appearing in Current Biology, Institute ...

Study shows how one insect got its wings

March 11, 2013

(Phys.org) —Scientists have delved deeper into the evolutionary history of the fruit fly than ever before to reveal the genetic activity that led to the development of wings – a key to the insect's ability to survive.

Snail shell coiling programmed by protein patterning

May 27, 2013

Snail shells coil in response to an lopsided protein gradient across their shell mantles, finds research in BioMed Central's open access journal EvoDevo. In contrast the shell mantle of limpets, whose shells do not coil, ...

Tumour suppressor genes curb growth in neighbouring cells

August 28, 2015

Researchers at IRB Barcelona unravel a role for tumour suppressor genes in restricting the growth of neighbouring cell populations. The study, published yesterday in PloS Biology, might have implications for understanding ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.