$13.5 million grant to develop working 'accelerator on a chip' prototype

November 19, 2015

The Gordon and Betty Moore Foundation has awarded $13.5 million to Stanford University for an international effort, including key contributions from the Department of Energy's SLAC National Accelerator Laboratory, to build a working particle accelerator the size of a shoebox based on an innovative technology known as "accelerator on a chip."

This novel technique, which uses laser light to propel electrons through a series of artfully crafted glass chips, has the potential to revolutionize science, medicine and other fields by dramatically shrinking the size and cost of particle accelerators.

"Can we do for particle accelerators what the microchip industry did for computers?" said SLAC physicist Joel England, an investigator with the 5-year project. "Making them much smaller and cheaper would democratize accelerators, potentially making them available to millions of people. We can't even imagine the creative applications they would find for this technology."

Robert L. Byer, a Stanford professor of applied physics and co-principal investigator for the project who has been working on the idea for 40 years, said, "Based on our proposed revolutionary design, this prototype could set the stage for a new generation of 'tabletop' accelerators, with unanticipated discoveries in biology and materials science and potential applications in security scanning, medical therapy and X-ray imaging."

The Chip that Launched an International Quest

The international effort to make a working prototype of the little accelerator was inspired by experiments led by scientists at SLAC and Stanford and, independently, at Friedrich-Alexander University Erlangen-Nuremberg (FAU) in Germany. Both teams demonstrated the potential for accelerating particles with lasers in papers published on the same day in 2013.

In the SLAC/Stanford experiments, published in Nature, electrons were first accelerated to nearly light speed in a SLAC accelerator test facility. At this point they were going about as fast as they can go, and any additional acceleration would boost their energy, not their speed.

The speeding electrons then entered a chip made of silica glass and traveled through a microscopic tunnel that had tiny ridges carved into its walls. Laser light shining on the chip interacted with those ridges and produced an electrical field that boosted the energy of the passing electrons.

In the experiments, the chip achieved an acceleration gradient, or energy boost over a given distance, roughly 10 times higher than the SLAC linear accelerator can provide. At full potential, this means the 2-mile-linac could be replaced with a series of accelerator chips 100 meters long ¬- roughly the length of a football field. .

In a parallel approach, experiments led by Peter Hommelhoff of FAU and published in Physical Review Letters demonstrated that a laser could also be used to accelerate lower-energy electrons that had not first been boosted to nearly light speed. Both results taken together open the door to a compact .

A Tough, High-payoff Challenge

For the past 75 years, particle accelerators have been an essential tool for physics, chemistry, biology and medicine, leading to multiple Nobel prize-winning discoveries. They are used to collide particles at high energies for studies of fundamental physics, and also to generate intense X-ray beams for a wide range of experiments in materials, biology, chemistry and other fields. But without new technology to reduce the cost and size of high-energy accelerators, progress in particle physics and structural biology could stall.

The challenges of building the prototype accelerator are substantial, the scientists said. Demonstrating that a single chip works was an important step; now they must work out the optimal chip design and the best way to generate and steer electrons, distribute laser power among multiple chips and make electron beams that are 1,000 times smaller in diameter to go through the microscopic chip tunnels, among a host of other technical details.

"The chip is the most crucial ingredient, but a working accelerator is way more than just this component," said Hommelhoff, a professor of physics and co-principal investigator of the project. "We know what the main challenges will be and we don't know how to solve them yet. But as scientists we thrive on this type of challenge. It requires a very diverse set of expertise, and we have brought a great crowd of people together to tackle it."

The Stanford-led collaboration includes world-renowned experts in accelerator physics, laser physics, nanophotonics and nanofabrication. SLAC and two other national laboratories ¬- Deutsches Elektronen-Synchrotron (DESY) in Germany and Paul Scherrer Institute in Switzerland - will contribute expertise and make their facilities available for experiments. In addition to FAU, five other universities are involved in the effort: University of California, Los Angeles, Purdue University, University of Hamburg, the Swiss Federal Institute of Technology in Lausanne (EPFL) and Technical University of Darmstadt.

"The accelerator-on-a-chip project has terrific scientists pursuing a great idea. We'll know they've succeeded when they advance from the proof of concept to a working prototype," said Robert Kirshner, chief program officer of science at the Gordon and Betty Moore Foundation. "This research is risky, but the Moore Foundation is not afraid of risk when a novel approach holds the potential for a big advance in science. Making things small to produce immense returns is what Gordon Moore did for microelectronics."

Explore further: 'Accelerator on a chip' demonstrated

Related Stories

'Accelerator on a chip' demonstrated

September 27, 2013

In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass ...

EU funds design study for European plasma accelerator

November 2, 2015

The European Union supports the development of a novel plasma particle accelerator with three million euros from the Horizon2020 program. The EU project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) ...

Unique SLAC technology to power X-ray laser in South Korea

August 10, 2015

Accelerator technology pioneered at the Department of Energy's SLAC National Accelerator Laboratory is on its way to powering X-ray science in South Korea: On Aug. 6, the lab shipped one of its unique radio-frequency amplifiers ...

Fire shuts down Stanford linear accelerator (Update)

June 26, 2014

The linear accelerator at Stanford University's SLAC National Accelerator Laboratory in California is shut down and two research labs idled after a fire damaged electrical equipment that helps power the accelerator.

Recommended for you

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.