Membrane “nano-fasteners” key to next-generation fuel cells

November 9, 2015, The Korea Advanced Institute of Science and Technology (KAIST)
Schematic diagram of the fabrication of the pillar P-SPAES membrane and its working principle of interlocking effects. Credit: KAIST

Scientists at Korea Advanced Institute of Science and Technology (KAIST) have developed a new way of making fuel cell membranes using nanoscale fasteners, paving the way for lower-cost, higher-efficiency and more easily manufactured fuel cells.

The internal workings of fuel cells vary, but basically all types mix hydrogen and oxygen to produce a chemical reaction that delivers usable electricity and exhausts ordinary water as a by-product. One of the most efficient types is the (PEM) , which operates at low enough temperatures to be used in homes and vehicles.

To generate electricity, PEM fuel cells rely on two chemical compartments separated by a permeable catalyst . This membrane acts as an electrolyte; a negative electrode is bonded to one side of the membrane and a positive electrode is bonded to the other. The electrolyte membrane is often based on a polymer of perfluorosulfonic acid. Due to its high cost, however, a less expensive hydrocarbon-based electrolyte membrane has attracted interest in this technology sector.

Until now, the challenge in adopting such a hydrocarbon membrane has been that the interface between the electrode and hydrocarbon membrane is weak. This causes the membrane to delaminate relatively easily, falling apart and losing efficiency with use.

Professor Hee-Tak Kim of the Department of Chemical and Biomolecular Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and his research team have developed a new fastening system that bonds the two materials mechanically rather than chemically. This opens the way to the development of fuel cell membranes that are less expensive, easier to manufacture, stronger and more efficient.

The researchers achieved this by moulding a pattern of tiny cylindrical pillars on the face of the hydrocarbon membrane. The pillars protrude into a softened skin of the electrode with heat. The mechanical bond sets and strengthens as the material cools and absorbs water. The pillar-patterned hydrocarbon membrane is cast using silicone moulds.

Professor Kim said, "This physically fastened bond is almost five times stronger and harder to separate than current bonds between the same layers."

The new interlocking method also appears to offer a way to bond many types of hydrocarbon membranes that, until now, have been rejected because they couldn't be fastened robustly. This would make hydrocarbon membranes practical for a number of applications beyond fuel cells such as rechargeable "redox flow" batteries.

Explore further: Stronger, longer-lasting fuel cell technology

Related Stories

Stronger, longer-lasting fuel cell technology

April 13, 2015

Manufacturers of low temperature fuel cells need solutions for improving the strength, durability and manufacturability of a key component, the membrane electrode assembly, or MEA.

Alternative energy key to a greener future

October 9, 2015

Los Alamos National Laboratory is leading a Department of Energy- Fuel Cells Technologies Office-funded project to enhance the performance and durability of polymer electrolyte membrane (PEM) fuel cells, while simultaneously ...

Researchers bring clean energy a step closer

February 27, 2015

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

Team advances fuel cell car technology

January 29, 2015

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.