Implantable wireless devices trigger—and may block—pain signals

November 9, 2015 by Jim Dryden, Washington University School of Medicine
Implantable wireless devices trigger -- and may block -- pain signals
Implanted microLED devices light up, activating peripheral nerve cells in mice. The devices are being developed and studied by researchers at Washington University School of Medicine in St. Louis and the University of Illinois at Urbana-Champaign as a potential treatment for pain that does not respond to other therapies. Credit: Gereau lab/Washington University

Building on wireless technology that has the potential to interfere with pain, scientists have developed flexible, implantable devices that can activate—and, in theory, block—pain signals in the body and spinal cord before those signals reach the brain.

The researchers, at Washington University School of Medicine in St. Louis and the University of Illinois at Urbana-Champaign, said the implants one day may be used in different parts of the body to fight that doesn't respond to other therapies.

"Our eventual goal is to use this technology to treat pain in very specific locations by providing a kind of 'switch' to turn off the long before they reach the brain," said co-senior investigator Robert W. Gereau IV, PhD, the Dr. Seymour and Rose T. Brown Professor of Anesthesiology and director of the Washington University Pain Center.

The study is published online Nov. 9 in the journal Nature Biotechnology.

Because the devices are soft and stretchable, they can be implanted into parts of the body that move, Gereau explained. The devices previously developed by the scientists had to be anchored to bone.

"But when we're studying neurons in the or in other areas outside of the central nervous system, we need stretchable implants that don't require anchoring," he said.

The new devices are held in place with sutures. Like the previous models, they contain microLED lights that can activate specific nerve cells. Gereau said he hopes to use the implants to blunt pain signals in patients who have pain that cannot be managed with standard therapies.

The researchers experimented with mice that were genetically engineered to have light-sensitive proteins on some of their nerve cells. To demonstrate that the implants could influence the pain pathway in , the researchers activated a pain response with light. When the mice walked through a specific area in a maze, the implanted devices lit up and caused the mice to feel discomfort. Upon leaving that part of the maze, the devices turned off, and the discomfort dissipated. As a result, the animals quickly learned to avoid that part of the maze.

The experiment would have been very difficult with older optogenetic devices, which are tethered to a power source and can inhibit the movement of the mice.

Because the new, smaller, devices are flexible and can be held in place with sutures, they also may have potential uses in or around the bladder, stomach, intestines, heart or other organs, according to co-principal investigator John A. Rogers, PhD, professor of materials science and engineering at the University of Illinois.

"They provide unique, biocompatible platforms for wireless delivery of light to virtually any targeted organ in the body," he said.

Rogers and Gereau designed the implants with an eye toward manufacturing processes that would allow for mass production so the devices could be available to other researchers. Gereau, Rogers and Michael R. Bruchas, PhD, associate professor of anesthesiology at Washington University, have launched a company called NeuroLux to aid in that goal.

Explore further: Tiny wireless injectable LED device shines light on mouse brain, generating reward

More information: Park SI, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnology, published online Nov. 9, 2015.

Related Stories

Neuroscience: Why scratching makes you itch more

October 30, 2014

Turns out your mom was right: Scratching an itch only makes it worse. New research from scientists at Washington University School of Medicine in St. Louis indicates that scratching causes the brain to release serotonin, ...

Spinal cord neurons that control pain and itch

March 19, 2015

The spinal cord transmits pain signals to the brain, where they are consciously perceived. But not all the impulses arrive at their destination: Certain neurons act as checkpoints and determine whether a pain signal is relayed ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

sjm
not rated yet Nov 09, 2015
Pain management is important. BUT, pain is an indicator of real problems. Hopefully, pain management will not mask symptoms that would indicate serious medical issues.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.