A snapshot of stem cell expression

October 1, 2015, European Molecular Biology Laboratory

Researchers on the Wellcome Genome Campus reveal new genes involved in stem cell pluripotency, new subpopulations of cells and new methods to find meaning in the data. Published in Cell Stem Cell, the findings have implications for the study of early development.

Stem cells exist in a 'ground' state before something triggers them to become develop into functional cells such as liver, heart or . What sparks that change has a lot to do with how, when and in what order the genes inside that cell are expressed, or turned on and off. Characterising the gene expression at play in is essential to understanding the fundamental biology of health and disease. It can also help in detecting genetic factors that figure into a person's response to a medicine.

Researchers at the Wellcome Trust Sanger Institute and EMBL's European Bioinformatics Institute (EMBL-EBI) used single-cell RNA sequencing technology to study the expression of thousands of genes in around 700 mouse Embryonic Stem Cells (mESCs), and found there is a signature 'gene expression mix' that characterises different cell populations. They also found this mix determines the length of the cell cycle. In other words, heterogeneity in gene expression across cells underpins cellular behaviour.

"You can take a kind of snapshot of this very dynamic process of gene expression, and infer a lot of information from it," explains Ola Kolodziejczk of EMBL-EBI and the Sanger Institute. "It's a bit like taking a picture of a crowd in Times Square at New Year's Eve from above and ordering all of the individuals by age to get a sense of their life cycle, or grouping them by clothing style to infer which party they will go onto next."

Single-cell RNA sequencing helps researchers see what makes all the cells in our bodies take on different shapes, predict what they might do and explore the many elements that contribute to their fates. In this study, the team developed novel approaches to characterise how vary, stem cell by stem cell, in three different states.

"One really exciting thing was that we identified new genes involved in the stem-cell regulatory network, and validated our findings using the CRISPR technology," says Jong Kyoung Kim of EMBL-EBI. "That brings us closer to inferring how the whole network is put together - and that in turn can give us insights into what keeps stem cells in a ground state and what triggers them to change."

By dissecting the noisy mix of cell by cell, the researchers uncovered a rare subpopulation of cells that express a couple of marker genes also expressed by cells at the two-cell stage of the embryo, which are able to develop into any cell type ('totipotent'). While the rare mESCs identified in this study only share some molecular features of the two-cell system, they will provide valuable resources to the study of early development.

"Our study really shows the power of single-cell transcriptomics, how it can reveal biologically relevant heterogeneity in expression that is often masked by traditional methods," says Sarah Teichmann, group leader at both EMBL-EBI and the Sanger Institute. "It adds a whole new dimension to how we find relationships between cultured cells and natural development, which is making a big difference in genomics research."

Explore further: New method for analysing RNA sequence data identifies new subtypes of cells

More information: Kolodziejczk AA, Kim JK, et al. (2015). Single-cell RNA sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell, pages. Published online 1 October; DOI: 10.1016/j.stem.2015.09.011

Related Stories

Researchers develop a method for controlling gene activation

September 8, 2015

Researchers at the University of Helsinki, Finland, have developed a new method which enables the activation of genes in a cell without changing the genome. Applications of the method include directing the differentiation ...

Scientists develop method for discovering rare cells

August 21, 2015

Scientists of the Hubrecht Institute Utrecht developed a new method for identifying rare cell types by single-cell mRNA sequencing. The newly developed algorithm, called RaceID, is very useful for identifying rare cell types ...

Scientists reveal how stem cells defend against viruses

September 21, 2015

Scientists from the Institute of Molecular and Cell Biology (IMCB), a research institute under the Agency for Science, Technology and Research (A*STAR), Singapore, have uncovered the mechanisms which embryonic stem cells ...

Toward an expression atlas for an entire brain

April 14, 2015

Researchers who study how genes are expressed across a given tissue can now examine thousands of genes at once at cellular resolution, thanks to new methods developed at EMBL and published in Nature Biotechnology. The new ...

Recommended for you

Researchers engineer a tougher fiber

February 22, 2019

North Carolina State University researchers have developed a fiber that combines the elasticity of rubber with the strength of a metal, resulting in a tougher material that could be incorporated into soft robotics, packaging ...

A quantum magnet with a topological twist

February 22, 2019

Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.