Paleoclimate researchers find connection between carbon cycles, climate trends

October 8, 2015 by Sheena Rice, University of Missouri-Columbia

Making predictions about climate variability often means looking to the past to find trends. Now paleoclimate researchers from the University of Missouri have found clues in exposed bedrock alongside an Alabama highway that could help forecast climate variability. In their study, the researchers verified evidence suggesting carbon dioxide decreased significantly at the end of the Ordovician Period, 450 million years ago, preceding an ice age and eventual mass extinction. These results will help climatologists better predict future environmental changes.

The Ordovician geologic period included a climate characterized by high (CO2) levels, warm average temperatures and flourishing life. Near the end of the period, CO2 levels dropped significantly but precisely when and how fast is poorly known. Kenneth MacLeod, a professor in the Department of Geological Sciences in the MU College of Arts and Science, directed a research team studying the climate changes 450 million years ago to better understand the interactions among the biosphere, the oceans, atmospheric CO2 levels, and temperature.

"Climate is not a simple science; many small factors determine what exactly leads to global warming and cooling trends," MacLeod said. "By understanding the deep past, we have better information about historic trends that lead to better predictions. Understanding carbon cycles adds value to our knowledge base of climate change."

During the Late Ordovician period, most of North America was covered in a shallow tropical sea. What is now Alabama was on the margin of that sea where local environmental effects likely did significantly impact carbon cycling. Page Quinton, a doctoral student in MU's program, led a field research team in northeastern Alabama that collected rock samples from rock formations exposed when workers cut highways through hills in the region. Using the samples, Quinton analyzed them for chemical clues that can be related to CO2 levels at specific time periods.

"After examining rocks 450 million years old or older, we believe the drop was caused by a massive burial of organic carbon during the time period," Quinton said. "We're trying to determine whether or not there was an increase in plant productivity, or huge algae blooms in the ocean, that died and fell to the sea floor, basically burying CO2. This burial, coupled with the mountain building event that created the Appalachian Mountains, could have contributed to the resulting ."

A drop in CO2 due to the burial of organic carbon in the Late Ordovician is the exact opposite of what is happening now as massive amounts of CO2 are being released; yet, understanding how the historic events occurred can help with future models and predictions, Macleod said.

Explore further: Ocean circulation rethink solves climate conundrum

More information: "Carbon cycling across the southern margin of Laurentia during the Late Ordovician," Palaeogeography, Palaeoclimatology, Palaeoecology, Available online 28 August 2015, ISSN 0031-0182, dx.doi.org/10.1016/j.palaeo.2015.08.020

Related Stories

Ocean circulation rethink solves climate conundrum

September 28, 2015

Researchers from the University of Exeter believe they have solved one of the biggest puzzles in climate science. The new study, published in Nature Geoscience, explains the synchrony observed during glacial periods when ...

Late Cretaceous Period was likely ice-free

September 24, 2013

For years, scientists have thought that a continental ice sheet formed during the Late Cretaceous Period more than 90 million years ago when the climate was much warmer than it is today. Now, a University of Missouri researcher ...

How fossil corals can shed light on the Earth's past climate

September 24, 2015

In a paper published today in Science, researchers from the University of Bristol describe how they used radiocarbon measured in deep-sea fossil corals to shed light on carbon dioxide (CO2) levels during the Earth's last ...

Fjords are 'hotspots' in global carbon cycling

May 4, 2015

While fjords are celebrated for their beauty, these ecosystems are also major carbon sinks that likely play an important role in the regulation of the planet's climate, new research reveals.

Recommended for you

Afromontane forests and climate change

January 17, 2019

In the world of paleoecology, little has been known about the historical record of ecosystems in the West African highlands, especially with regard to glacial cycles amidst a shifting climate and their effects on species ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.