
 

New general-purpose optimization algorithm
promises order-of-magnitude speedups on
some problems

October 23 2015, by Larry Hardesty

  
 

  

"Cutting plane" methods converge on the optimal values of a mathematical
function by repeatedly cutting out regions of a much larger set of possibilities
(gold sphere). Credit: Jose-Luis Olivares/MIT
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Optimization problems are everywhere in engineering: Balancing design
tradeoffs is an optimization problem, as are scheduling and logistical
planning. The theory—and sometimes the implementation—of control
systems relies heavily on optimization, and so does machine learning,
which has been the basis of most recent advances in artificial
intelligence.

This week, at the IEEE Symposium on Foundations of Computer
Science, a trio of present and past MIT graduate students won a best-
student-paper award for a new "cutting-plane" algorithm, a general-
purpose algorithm for solving optimization problems. The algorithm
improves on the running time of its most efficient predecessor, and the
researchers offer some reason to think that they may have reached the
theoretical limit.

But they also present a new method for applying their general algorithm
to specific problems, which yields huge efficiency gains—several orders
of magnitude.

"What we are trying to do is revive people's interest in the general
problem the algorithm solves," says Yin-Tat Lee, an MIT graduate
student in mathematics and one of the paper's co-authors. "Previously,
people needed to devise different algorithms for each problem, and then
they needed to optimize them for a long time. Now we are saying, if for
many problems, you have one algorithm, then, in practice, we can try to
optimize over one algorithm instead of many algorithms, and we may
have a better chance to get faster algorithms for many problems."

Lee is joined on the paper by Aaron Sidford, who was an MIT graduate
student in electrical engineering and computer science when the work
was done but is now at Microsoft Research New England, and by Sam
Wong, who earned bachelor's and master's degrees in math and electrical
engineering and computer science at MIT before moving to the
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University of California at Berkeley for his PhD.

Inner circle

Optimization problems are generally framed as trying to find the
minimum value of a mathematical function, called a "cost function." In
car design, for example, the cost function might impose penalties for
weight and drag but reward legroom and visibility; in an algorithm for
object detection, the cost function would reward correct classification of
various objects and penalize false positives.

At a very general level, finding the minimum of a cost function can be
described as trying to find a small cluster of values amid a much larger
set of possibilities. Suppose that the total range of possible values for a
cost function is represented by the interior of a circle. In a standard
optimization problem, the values clustered around the minimum value
would then be represented by a much smaller circle inside of the first
one. But you don't know where it is.

Now pick a point at random inside the bigger circle. In standard
optimization problems, it's generally possible to determine whether that
point lies within the smaller circle. If it doesn't, it's also possible to draw
a line that falls between it and the smaller circle.

Drawing that line cuts off a chunk of the circle, eliminating a range of
possibilities. With each new random point you pick, you chop off
another section of the circle, until you converge on the solution.

If you represent the range of possibilities as a sphere rather than a circle,
then you use a plane, rather than a line, to cut some of them off. Hence
the name for the technique: the cutting-plane method.

In most real optimization problems, you need a higher-dimensional
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object than either a circle or a sphere: You need a hypersphere, which
you cut with a hyperplane. But the principle remains the same.

A matter of time

Theoretical computer scientists measure algorithms' running times not in
seconds or hours, but in the number of operations required, relative to
the number of elements being manipulated. With cutting-plane methods,
the number of elements is the number of variables in the cost
function—the weight of the car, the cost of its materials, drag, legroom,
and so on. That's also the dimension of the hypersphere.

With the best general-purpose cutting-plane method, the time required to
select each new point to test was proportional to the number of elements
raised to the power 3.373. Sidford, Lee, and Wong get that down to 3.

But they also describe a new way to adapt cutting-plane methods to
particular types of optimization problems, with names like submodular
minimization, submodular flow, matroid intersection, and semidefinite
programming. And in many of those cases, they report dramatic
improvements in efficiency, from running times that scale with the fifth
or sixth power of the number of variables (n5 or n6, in computer science
parlance) down to the second or third power (n2 or n3).

"This is indeed an astonishing paper," says Satoru Iwata, a professor of
mathematical informatics at the University of Tokyo, who has published
widely on the problem of submodular minimization. "For this problem,"
he says, "the running time bounds derived with the aid of discrete
geometry and combinatorial techniques are by far better than what I
could imagine."

  More information: A Faster Cutting Plane Method and its
Implications for Combinatorial and Convex Optimization. 
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arxiv.org/abs/1508.04874

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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