Under Saturnian moon's icy crust lies a 'global' ocean

September 15, 2015 by Blaine Friedlander, Cornell University
Underneath the icy, thick crust of Enceladus - one of Saturn's moons - lies a global ocean. Credit: NASA/JPL-CalTech

By measuring with exquisite precision the tiny wobbles of Saturn's moon Enceladus – whose cosmic quavers are detectable only in high-resolution images taken by NASA's Cassini spacecraft – Cornell University researchers have learned that a global ocean lies beneath the moon's thick icy crust.

Cornell planetary scientists have analyzed more than seven years worth of Enceladus images taken by the spacecraft, which has been orbiting Saturn since mid-2004. "This was a hard problem that required years of observations and calculations involving a diverse collection of disciplines, but we are confident we finally got it right," said Peter Thomas, Cornell research scientist and lead author of "Enceladus' measured physical libration requires a global subsurface ocean," published online by the journal Icarus (September 2015).

The geologically diverse Enceladus vigorously vents vapor and liquid water from fractures in its icy crust at its south polar region, as discovered early in Cassini's exploration of the Saturn system. However, space scientists were uncertain about the extent of the subsurface water source.

With each Cassini photographic pass, Thomas and others painstakingly pinpointed and measured Enceladus' topographic features – about 5,800 points – by hand. A slight wobble, about a tenth of a degree, was detected, but even this small motion – called a libration – is far larger than if the surface crust were solidly connected to the satellite's rocky core. Thus, the scientists determined that the satellite must have a global liquid layer, far more extensive than the previously inferred regional liquid "sea" beneath the south pole.

Under Saturnian moon's icy crust lies a 'global' ocean
Illustration of the interior of Saturn's moon Enceladus showing a global liquid water ocean between its rocky core and icy crust. Thickness of layers shown here is not to scale. Credit: NASA/JPL-Caltech
"If the surface and core were rigidly connected, the core would provide so much dead weight that the wobble would be far smaller than we observe it to be," said Matthew Tiscareno, who left Cornell in the summer to join the SETI Institute in Mountain View, California. "This proves that there must be a global layer of liquid separating the surface from the core," he said.

"We're just at the start of learning that Enceladus is incredibly interesting," said Joe Burns, Cornell's Irving Porter Church Professor of Engineering, professor of astronomy and dean of the faculty. "Thanks to great spacecraft like Cassini and exquisitely fine measurements, we're seeing things not possible 20 years ago."

For Carolyn Porco, Cassini imaging team lead at Space Science Institute in Boulder, Colorado, this work illustrates complexity and the many different parts of scientific investigation: The primary measurements were marked manually; the geometry is derived from accurate knowledge of spacecraft location, tracking Cassini's radio signal and using its images to locate features on the satellites.

"This is a major step beyond what we understood about this moon before, and it demonstrates the kind of deep-dive discoveries we can make with long-lived orbiter missions to other planets," said Porco. "Cassini has been exemplary in this regard."

In addition to Thomas, Burns, Tiscareno and Porco, the authors include Radwan Tajeddine, Cornell space sciences researcher; Jonathan Joseph, Cornell programmer; and senior research associates Tom Loredo and Paul Helfenstein.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory in Pasadena, California, manages the mission.

Explore further: Cassini image: Dark side of Enceladus

Related Stories

Cassini image: Dark side of Enceladus

August 26, 2015

Enceladus looks as though it is half lit by sunlight in this view from NASA's Cassini spacecraft, but looks can be deceiving. The area on the right, where surface features can be made out, are actually illuminated by light ...

Cassini's final breathtaking close views of Dione

August 21, 2015

A pockmarked, icy landscape looms beneath NASA's Cassini spacecraft in new images of Saturn's moon Dione taken during the mission's last close approach to the small, icy world. Two of the new images show the surface of Dione ...

Latest Cassini images of Enceladus on view

October 21, 2011

(PhysOrg.com) -- Raw, unprocessed images from the successful Oct. 19 flyby of Saturn's moon Enceladus by NASA's Cassini spacecraft provide new views of the moon and the icy jets that burst from its southern polar region. ...

Cassini zooms past Dione

June 19, 2015

The rugged landscape of Saturn's fracture-faced moon Dione is revealed in images sent back by NASA's Cassini spacecraft from its latest flyby. Cassini buzzed past Dione on June 16, coming within 321 miles (516 kilometers) ...

Cassini flyby focuses on Saturn's moon Enceladus

November 8, 2011

(PhysOrg.com) -- Saturn's moon Enceladus shows its icy face and famous plumes in raw, unprocessed images captured by NASA's Cassini spacecraft during its successful flyby on Nov. 6, 2011.

Unusual red arcs spotted on icy Saturn moon Tethys

July 30, 2015

Like graffiti sprayed by an unknown artist, unexplained arc-shaped, reddish streaks are visible on the surface of Saturn's icy moon Tethys in new, enhanced-color images from NASA's Cassini spacecraft.

Recommended for you

Making stars when the universe was half its age

January 18, 2019

The universe is about 13.8 billion years old, and its stars are arguably its most momentous handiwork. Astronomers studying the intricacies of star formation across cosmic time are trying to understand whether stars and the ...

Saturn hasn't always had rings

January 17, 2019

One of the last acts of NASA's Cassini spacecraft before its death plunge into Saturn's hydrogen and helium atmosphere was to coast between the planet and its rings and let them tug it around, essentially acting as a gravity ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Scottingham
not rated yet Sep 16, 2015
Yarr, where there be water there be life!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.