Photonics to revolutionise internet speeds

September 8, 2015 by Rob Payne, Sciencenetwork Wa
The stumbling block has been the fundamental nature of light. Credit: Steve Jurvetson

While people may have never heard of photonics before, they will surely have heard about the technology that relies on its existence, namely the internet, computers and smartphones.

Therefore people should appreciate how groundbreaking research in photonics is changing the very fabric of our lives.

This formed part of the message from Professor Benjamin Eggleton, Director of the Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), who recently presented the first talk of UWA's LightTALKS Lecture Series.

"Photonics deals with the control and manipulation of , the building blocks of light—and by light, we're talking about the electromagnetic wave," Prof Eggleton said.

"It has had enormous impact on society, [being] central to visualising displays, microscopy and transformative technologies in health, astronomy, storage and broadband-ready information.

"Photonics is the backbone of the modern internet."

Prof Eggleton said few people realise internet traffic and mobile communications are carried exclusively by a global optical fibre network running under the oceans, not satellites.

Photonics could significantly increase internet speed

Now, photonics and CUDOS are on the verge of revolutionising the internet once again through the '', which could allow for speeds and data transfer a thousand times faster than current levels.

This is because a photonic chip would make the electronic router obsolete, removing the need to convert data from photons in optical fibres to slower electrons.

The chip's physical development is straightforward, with researchers applying the micro-fabrication technologies of electronics to photonics, and using lithography to print at the micro-scale on integrated chips.

The stumbling block has been the fundamental nature of light.

Unlike electrons, which react with one another and allow for the switching on and off of a computer's billions of transistors, photons don't interact with photons—which is where non-linear optics comes in.

"What we can do, it turns out, is interact photons with photons via the medium itself—the light beam modifies the medium at an atomic level and this change in the medium will affect another light beam," Prof Eggleton said.

This makes possible the concept of an optical transistor, one whose process is instantaneous.

Prof Eggleton said the photonics revolution is in its infancy and promises amazing technological advances.

This includes real-life Harry Potter-style invisibility cloaking, which is possible thanks to nano-resonators creating magnetic properties in light that are nonexistent in nature.

"It is real, and it works really well at microwave frequency," Prof Eggleton said.

Explore further: Industry partnership supports Australian production of next-generation photonics

Related Stories

Breakthrough in nonlinear optics research

March 5, 2015

A method to selectively enhance or inhibit optical nonlinearities in a chip-scale device has been developed by scientists, led by the University of Sydney. The researchers from the Centre for Ultrahigh bandwidth Devices for ...

Optics innovation an industry success

April 9, 2013

An optics innovation by a University of Sydney researcher has been a financial and technology transfer success story creating a wave of sales for Finisar, the Australian company that has used the new technology.

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.