Parasitic disease: Contact rates, competition matter in transmission

September 8, 2015, National Institute for Mathematical and Biological Synthesis
Cross-species contact and competition together determine disease transmission in multispecies communities. Credit: Stephanie M. Dloniak

Contact and competition among different animals within a community matters when it comes to the possibility of parasitic disease outbreak, according to new research from the National Institute for Mathematical and Biological Synthesis and the University of Georgia, Athens.

The study sheds new light on how parasites spread in comprised of multiple , from rhinos to giraffes, lions to hyenas, birds to mice, and more. Parasitic diseases include influenza viruses, rabies virus, distemper viruses and hantaviruses.

Risk of parasitic disease outbreak is either amplified or diluted depending upon the ecological context, according to the study published today in American Naturalist.

In some animal communities, for example, contact is high and is strong, which can be the case among hyenas and lions. In other communities, such as with ground kangaroos and tree kangaroos living in separate habitats, contact is low and competition is weak. Other communities are characterized by high contact and weak competition, such as in rhinos and giraffes, whereas in some communities, animals exhibit low contact but strong competition, such as with birds and rodents.

Adding more species can either amplify or dilute parasite fitness and hence, the propensity for .

Previous theory has suggested that dilution of outbreak risk is likely to occur in systems with frequency-dependent transmission, which occurs when per-capita contact rates within and between are independent of population size. Previous theory also suggested that disease risk is amplified in systems with density-dependent transmission or when per-capita contact rates change based on population density.

However, a novel finding of the study is that depending on the degree of contact between different species in the animal community and the traits of the hosts in that community, amplification of transmission can occur in frequency-dependent systems. Outbreak risk may increase as species are added to the community, if contact rates between different species are high relative to contact within the same species, which allows for more frequent opportunities for the shared parasite to spillover between different host species.

The study also found that, in density-dependent systems, dilution can occur, especially in situations where competition between different species is sufficiently strong.

Both transmission outcomes—dilution and amplification—are possible in all the ecological contexts examined in the study, except in the case where transmission is density-dependent and in situations where competition occurs only within the same species.

Essentially, the study points out that increased in multispecies may have different drivers.

"I think the important contribution of the research is that our approach makes strides toward a mechanistic framework for diversity-disease interactions. Contact patterns and competition need to be included as components of predictive models for disease-diversity relationships," said lead author Suzanne O'Regan, a NIMBioS postdoctoral fellow.

Explore further: Study in bats and rodents offers insights on how viruses spread across species

More information: O'Regan SM, Vinson JE, Park A. 2015. Interspecific contact and competition may affect the strength and direction of disease-diversity relationships for directly transmitted microparasites. American Naturalist. www.jstor.org/stable/amernatu.ahead-of-print

Related Stories

Study proves biodiversity buffers disease

October 15, 2014

When a community is biodiverse with many different species, the risk of disease decreases, according to a new study that uses experiments to understand the mechanisms for this pattern, called the "dilution effect."

Recommended for you

Climate change not main driver of amphibian decline

September 25, 2018

While a warming climate in recent decades may be a factor in the waning of some local populations of frogs, toads, newts and salamanders, it cannot explain the overall steep decline of amphibians, according to researchers.

The grim, final days of a mother octopus

September 25, 2018

Octopuses are the undisputed darlings of the science internet, and for good reason. They're incredibly intelligent problem-solvers and devious escape artists with large, complex nervous systems. They have near-magical abilities ...

Team names world's largest ever bird—Vorombe titan

September 25, 2018

After decades of conflicting evidence and numerous publications, scientists at international conservation charity ZSL's (Zoological Society of London) Institute of Zoology, have finally put the 'world's largest bird' debate ...

Team discovers new species of dazzling, neon-colored fish

September 25, 2018

On a recent expedition to the remote Brazilian archipelago of St. Paul's Rocks, a new species of reef fish—striped a vivid pink and yellow—enchanted its diving discoverers from the California Academy of Sciences. First ...

Built-in sound amplifier helps male mosquitoes find females

September 25, 2018

The ears of male mosquitoes amplify the sound of an approaching female using a self-generated phantom tone that mimics the female's wingbeats, which increases the ear's acoustic input by a factor of up to 45,000, finds a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.