Newly discovered metabolism certifies evolutionary advantage for yeast

September 24, 2015
Electronmicroscopy of Pichia pastoris cells: normal yeast cells grown on glucose on the left. Clearly visible peroxisomes (Px), the organelles responsible for assimilation of methanol into cellular biomass on the right. Credit: acib/University of Graz

Duplicate copies of genes safeguard survival of the biotech yeast Pichia pastoris in environments where only methanol is present as feed. A recently elucidated metabolism is similar to that used by plants for the utilization of carbon dioxide.

Yeast is being used by mankind for longer time than any other microorganism. Bread, beer, wine - all of these could not be produced without Saccharomyces cerevisiae (baker's ) and other . Over the last decades yeast has become indispensable for as a reliable cell factory. Valuable products ranging from enzymes to are industrially produced using yeast, mostly by a species called Pichia pastoris that is particularly productive.

Because of its long and varied use, yeast is one of the best studied organisms. Besides its industrial application Pichia pastoris is also used by scientists as a model organism for studying cell structures. Everything seemed familiar - until this year. Researchers of the Austrian Centre of Industrial Biotechnology (acib) and the University of Natural Resources and Life Sciences Vienna (BOKU) have elucidated a new pathway that makes the yeast Pichia pastoris unique. "We were able to show that the assumptions and models that have been used in the last 30 years are not right", explains Prof. Diethard Mattanovich (BOKU and head of the research area "Systems Biology & Microbial Cell Engineering" at acib).

The new pathway explains the utilization of methanol as "feed". Yeasts such as Pichia pastoris belong to the rare kind of microorganisms that are able to utilize this simple alcohol as nutrient. Mattanovich: "The cells use that option, for example, when they grow naturally in the sap of trees, where methanol is present."

The researchers around project leader Dr. Brigitte Gasser discovered amazing similarities with plants. These use (CO2) as a nutrient and recycle the greenhouse gas in cell organelles called chloroplasts. Eventually CO2 is converted to biomass. Pichia works similarly: It converts methanol, which consists of one carbon atom like CO2, in a cell organelle called peroxisome. The decisive role in both processes is the formation of chemical bonds between carbon atoms and the rearrangement into sugar molecules and other substances, which are necessary for the synthesis of biomass. "So far we did not know where these rearrangements are performed in the cells, and which genes control them", says Brigitte Gasser.

Project managers Brigitte Gasser and Professor Diethard Mattanovich discussing yeast research data. Credit: acib

Just as little was known about the genetic encoding of this metabolism. Most cells have one gene available per protein and metabolic step. Pichia is evolutionarily on the safe side. All genes for methanol manipulation are duplicated, as Mattanovich and Gasser have discovered together with 13 scientists who were involved in this research project. The genes do not only have an additional genetic information so that the appropriate reactions are located to the peroxisome. They are active only when methanol is present as a nutrient source.

For these findings, the researchers have re-evaluated the entire data, which have emerged in the recent years while improving Pichia pastoris biotechnologically at acib and BOKU. "The interpretation of our systems biology data revolutionized the understanding of cell biology", says Brigitte Gasser, delighted about the new knowledge of life processes on earth. The work was recently published in the prestigious journal BMC Biology. The results demonstrate the leading role of Vienna researchers when it comes to the biotech yeast Pichia pastoris.

Explore further: Tutoring for nature: Production of valuable nootkatone with yeast

More information: Systems-level organization of yeast methylotrophic lifestyle, RuĂźmayer et al. 2015. BMC Biology 13:80, www.biomedcentral.com/1741-7007/13/80

Related Stories

Microorganism shows promise in inhibiting thrush

March 13, 2014

Scientists at Case Western Reserve School of Medicine and University Hospitals (UH) Case Medical Center have discovered how the beneficial fungal yeast, Pichia, holds at bay a harmful fungal yeast, Candida. The hope for this ...

Yeast uses CO2 to boost bioethanol production

September 10, 2013

Introducing four genes from bacteria and spinach has enabled researchers at the Delft University of Technology to improve the production of bioethanol with yeast by using carbon dioxide. Their findings were published last ...

Recommended for you

Gut bacteria from wild mice boost health in lab mice

October 19, 2017

Laboratory mice that are given the gut bacteria of wild mice can survive a deadly flu virus infection and fight colorectal cancer dramatically better than laboratory mice with their own gut bacteria, researchers report October ...

Gene editing in the brain gets a major upgrade

October 19, 2017

Genome editing technologies have revolutionized biomedical science, providing a fast and easy way to modify genes. However, the technique allowing scientists to carryout the most precise edits, doesn't work in cells that ...

New discovery challenges long-held evolutionary theory

October 19, 2017

Monash scientists involved in one of the world's longest evolution experiments have debunked an established theory with a study that provides a 'high-resolution' view of the molecular details of adaptation.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.