Small tilt in magnets makes them viable memory chips

August 3, 2015, University of California - Berkeley
Small tilt in magnets makes them viable memory chips
This image taken from a computer simulation shows nanomagnets tilted at various angles, with the white regions indicating greater angles of tilt. Researchers have found that even a small tilt of 2 degrees will facilitate magnetic switching. Credit: Samuel Smith, UC Berkeley

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

The advance, to be reported Monday, Aug. 3, in the Proceedings of the National Academy of Sciences, could lead to computers that turn on in an instant and operate with far greater speed and significantly less power.

A research team led by Sayeef Salahuddin, an associate professor of electrical engineering and computer sciences, has found that a slight tilt of the magnets makes them easy to switch without an . This opens the door to a memory system that can be packed onto a microprocessor, a major step toward the goal of reducing in modern electronics.

"To reduce the power draw and increase the speed, we want to be able to manufacture a computer chip that includes memory so that it is close to the computational action," said Salahuddin. "However, the physics needed to create long-term storage are not compatible with ."

Creating and switching polarity in magnets without an external has been a key focus in the field of spintronics. Generating a magnetic field takes power and space, which is why magnets have not yet been integrated onto computer chips.

Instead, there are separate systems for long-term magnetic memory. These include a computer's hard disk drive where data are stored, and the various kinds of random-access memory, or RAM, on the integrated circuits of the , or CPU, where calculations and logic operations are performed.

A large portion of the energy used in computing is spent on transferring data from one type of memory to another. Doing that quickly takes more energy and generates more heat.

In past research, Salahuddin and his colleagues found that directing electrical current through the rare metal tantalum creates polarity in magnets without an external magnetic field. But the battle wasn't over.

Packing a sufficient number of nanomagnets onto a chip meant aligning them perpendicularly, but that vertical orientation negated the switching effects of tantalum.

"We found that by tilting the magnet - just 2 degrees was enough - you get all the benefits of a high-density magnetic switch without the need for an external magnetic field," said Salahuddin.

Explore further: New milestone could help magnets end era of computer transistors

More information: PNAS www.pnas.org/cgi/doi/10.1073/pnas.1507474112

Related Stories

Magnetic memories on the right track

August 27, 2014

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need to 'boot up' a ...

Recommended for you

The secret to measuring the energy of an antineutrino

June 18, 2018

Scientists study tiny particles called neutrinos to learn about how our universe evolved. These particles, well-known for being tough to detect, could tell the story of how matter won out over antimatter a fraction of a second ...

Quantum transfer at the push of a button

June 15, 2018

In new quantum information technologies, fragile quantum states have to be transferred between distant quantum bits. Researchers at ETH have now realized such a quantum transmission between two solid-state qubits at the push ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.