Photoredox catalyst unlocks new pathways for nickel chemistry

August 12, 2015, Princeton University
Photoredox catalyst unlocks new pathways for nickel chemistry
Using a light-activated catalyst, researchers at Princeton have unlocked a new pathway in nickel chemistry to construct carbon-oxygen bonds that would be highly valuable to pharmaceutical and agrochemical industries. Credit: MacMillan group

Using a light-activated catalyst, researchers have unlocked a new pathway in nickel chemistry to construct carbon-oxygen (C-O) bonds that would be highly valuable to pharmaceutical and agrochemical industries.

"It was extraordinary to see the reaction go from zero to 91 percent yield just by adding a and switching on a light," said David MacMillan, the James S. McDonnell Distinguished University Professor of Chemistry and principal investigator of the work published on August 12 in the journal Nature.

The article reported the first general C-O cross-coupling reaction, which connects ring-shaped molecules, called aromatics, to alcohol-containing molecules, using a dual nickel-photoredox catalyst system. Extending nickel's reach to C-O coupling reactions has great potential given the tremendous impact nickel chemistry has had on analogous C-C coupling reactions.

For the most part, these C-O cross-coupling reactions have been unattainable by traditional nickel catalysis. That's because the final bonding-forming step—called reductive elimination—in which nickel excises itself to leave behind a C-O bond, is fundamentally unfavorable. By introducing a photocatalyst, the research team was able to remove a single electron from the nickel intermediate to access an elusive, oxidation state of nickel that can readily form the desired bond.

Using a photocatalyst to effectively expand the possible oxidation states of nickel has significant implications beyond this specific transformation. "We assume that it's not just nickel chemistry that you can dramatically change, but other metals as well," MacMillan said. "That's very exciting position to be in."

To confirm their understanding of how the catalysts worked together to promote the reaction, Valerie Shurtleff, a graduate student in the MacMillan lab and co-author on the paper, performed a series of mechanistic experiments.

Shurtleff synthesized a model nickel complex that mimicked the key bond-forming intermediate, a nickel compound bridging the two coupling partners. She found that without the presence of both light and photocatalyst, the complex was unable to form the product. Further electrochemical experiments confirmed that the model nickel complex was well within the range of molecules with which the photocatalyst could theoretically interact.

The new nickel-photocatalyst combination also offers a mild alternative to similar existing methods that employ palladium or copper catalysts and that can access complementary coupling partners.

The MacMillan group has made many major contributions in the area of photoredox catalysis, but has only recently begun discovering the possibilities that arise from combining photoredox with other forms of catalysis, such as . "There are so many different avenues to explore," Shurtleff said, "we're really just getting started."

Explore further: A collaboration of minds and metal

More information: Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. "Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis." 2015, Nature. DOI: 10.1038/nature14875

Related Stories

A collaboration of minds and metal

June 24, 2014

This past January, Derek Ahneman, a graduate student in the lab of Abigail Doyle, a Princeton University associate professor of chemistry, began work on an ambitious new project: he proposed the merger of two areas of research ...

Aromatic couple makes new chemical bonds

June 29, 2015

Esters have been identified to act as a new and clean coupling partner for the carbon-carbon bond forming cross-coupling reaction to make useful compounds for pharmaceuticals, agrochemicals and organic materials.

Understanding nickel catalysis

March 5, 2015

Catalysis is a chemical phenomenon that increases the rate of a chemical reaction by spending only a tiny amount of additional substance, called a catalyst. Around 90 percent of all commercially manufactured products involve ...

Acetic acid as a proton shuttle in gold chemistry

July 24, 2015

A recently published study gives a vivid example of unusual chemical reactivity associated with organogold complexes. Using modern physical methods and computational studies, the authors propose a reaction mechanism in which ...

Recommended for you

Scientists discover new 'architecture' in corn

January 21, 2019

New research on the U.S.'s most economically important agricultural plant—corn—has revealed a different internal structure of the plant than previously thought, which can help optimize how corn is converted into ethanol.

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.