
 

What neuroscience can learn from computer
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Screenshot from the original “Metropilis” trailer. Credit: Paramount pictures,
1927. Public domain

What do computers and brains have in common? Computers are made to
solve the same problems that brains solve. Computers, however, rely on
a drastically different hardware, which makes them good at different
kinds of problem solving. For example, computers do much better than
brains at chess, while brains do much better than computers at object
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recognition. A study published in PLOS ONE found that even bumblebee
brains are amazingly good at selecting visual images with color,
symmetry and spatial frequency properties suggestive of flowers.
Despite their differences, computer science and neuroscience often
inform each other.

In this post, I will explain how do computer scientists and neuroscientists
often learn from each others' research and review the current
applications of neuroscience-inspired computing.

Brains are good at object recognition
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Can you see a figure among the dots? Credit: Barbara Nordhjem, reprinted with
permission

Look at the figure (image 2) composed of seemingly random dots.
Initially the object in the image is blended with the background. Within
seconds, however, you will see a curved line, and soon after the full
figure. What is it? (The spoiler is at the end of this post.)
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Computer vision algorithms, which are computer programs designed to
identify objects in images and video, fail to recognize images like image
2. As for humans, it turns out that although people take time to recognize
a hidden object, people start looking at the right location in the image
very soon and long before they are able to identify it. That does not
mean that people somehow know which object they are seeing, but
cannot report the correct answer. Rather, people experience sudden
perception of the object after continued observation. A 2014 study
published in PLOS ONE found that this may be because the human visual
system is amazingly good at picking out statistical irregularities in
images.

Neuroscience-inspired computer applications

Like any experimental science neuroscience research starts with listing
all possible hypotheses to explain results of experiments. Questions such
as: "How can a magician hide movement in plain sight?" or "What
causes optical illusions?" are probed by researchers.

Comparatively, computer science researchers begin their process by
listing alternative methods to implement behavior, such as vision, in a
computer. Instead of discovering how vision works, computer scientists
develop software to solve problems such as: "How should a self-driving
car respond to an apparent obstacle?" or "Are these two photographs of
the same person?"

An acceptable computer-vision solution for artificial intelligence (AI),
just like a living organism, must process information quickly and on a
limited knowledge. For example, slow reaction time for a self-driving
car might result in the death of a child, or stopping traffic because of a
pothole. The processing speed of current computer vision algorithms is
far behind the speed of visual processes humans employ daily, however,
the technical solutions that computer scientists develop may have

4/11

https://phys.org/tags/vision+algorithms/
https://phys.org/tags/computer+science/


 

relevance to neuroscience, sometimes acting as a source of hypothesis
about how biological vision might actually work.

Likewise, most AI, such as computer vision, speech recognition or even
robotic navigation, addresses problems already solved in biology. Thus,
computer scientists often face a choice between inventing a new way for
a computer to see or modeling on a biological approach. A solution that
is biologically plausible has the advantage of being resource-efficient
and tested by evolution. Probably the best-known example of a
biomimetic technology is Velcro, an artificial fabric recreating an
attachment mechanism used by plants. Biomimetic computing, that is,
recreating functions of biological brains in software, is just as ingenuous,
but much less well known outside the specialized community.

The interrelated components of neuroscience and computer science
compelled me to explore how computer scientists and neuroscientists
learn from each other. After visiting the International Conference on
Perceptual Organization (ICPO) in June 2015, I made a list of trends in
neuroscience-inspired computer applications that I will explore in more
detail in this post:

1. Computer vision based on features of early vision
2. Gestalt-based image segmentation (Levinshtein, Sminchisescu,

Dickinson, 2012)
3. Shape from shading and highlights—which is described in more

detail in a recent PLOS Student Blog post
4. Foveated displays (Jacobs et al. 2015)
5. Perceptually-plausible formal shape representations

My favorite example of the interlocking components of neuroscience
and computer science is computer vision based on features of early
vision. ( Note that there are also many other, not biologically-inspired
approaches to computer vision.) I particularly like this example because
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in this case a discovery in neuroscience of vision of seemingly simple
principles of how visual cortex processes information informed a whole
new trend in computer science research. To explain how computer vision
borrows from biology, lets begin by reviewing the basics of human
vision.

Inside the visual cortex

Let me present a hypothetical situation. Suppose you are walking along a
beach with palm trees, tropical flowers and brightly colored birds. As
new objects enter your field of vision, they seem to enter your awareness
instantly. But in reality, shape perception emerges in the first 80-150
milliseconds of exposure (Wagemans, 2015). So how long is 150 ms?
For comparison, in 150 ms a car travels four meters at highway speed,
and a human walking along a beach travels about 20 centimeters in the
time it takes to form a mental representation of an object, such as a tree.
Thus, as you observe the palm trees, the flowers and the birds, your brain
gradually assembles familiar percepts. During the first 80-150 ms,
before awareness of the object has emerged, your brain is hard at work
assembling shapes from short and long edges in various orientations,
which are coded by location-specific neurons in primary visual area, V1.

Today, we know a lot about primary visual area V1 thanks to pioneering
research of Hubel and Wiesel, who both won the Nobel Prize for
discovering scale and orientation-specific neurons in cat visual cortex in
the late 1950s. As an aside, if you have not yet seen the original videos
of their experiments demonstrating how a neuron in a cat's visual cortex
responds to a bar of light, I highly recommended viewing these classic
videos!

Inside the computer
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Approximation of a square wave with four Fourier components. Image credit:
Credit: Jim.belk, Public Domain via Wikimedia Commons
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At about the time that Hubel and Wiesel made their breakthrough,
mathematicians were looking for new tools for signal processing, to
separate data from noise in a signal. For a mathematician, a signal may
be a voice recording encoding a change of frequency over time. It may
also be an image, encoding a change of pixel brightness over two
dimensions of space.

When the signal is an image, signal processing is called image
processing. Scientists care about image processing because it enables a
computer "to see" a clear precept while ignoring the noise in sensors and
in the environment, which is exactly what the brain does!

The classic tools of signal processing, Fourier transforms, were
discovered by Joseph Fourier in the nineteenth century. A Fourier
transform represents data as a weighted sum of sines and cosines. For
example, it represents the sound of your voice as a sum of single
frequency components! As illustrated in the figure above, the larger the
quantity of frequency components that are used, the better is the
approximation. Unfortunately, unlike brain encodings, Fourier
transforms do not explicitly encode the edges that define objects.

To solve this problem, scientists experimented with sets of arbitrary
basis functions encoding images for specific applications. Square waves,
for example, encode low-resolution previews downloaded before a full-
resolution image transfer is complete. Wavelet transforms of other
shapes are used for image compression, detecting edges and filtering out
lens scratches captured on camera.

What do computers see?

It turns out that a specially selected set of image transforms can model
the scale and orientation-specific neurons in primary visual area, V1.
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The procedure can be visualized as follows. At first, we process the
images by a progressively lower spatial frequency filters. The result is a
pyramid of image layers, equivalent to seeing the image from further
and further away. Then, each layer is filtered by several edge
orientations in turn. The result is a computational model of the initial
stage in early visual processing, which assumes that the useful data (the
signal in the image) are edges within a frequency interval. Of course,
such a model represents only a tiny aspect of biological vision.
Nevertheless, it is a first step towards modeling more complex features
and it answers an important theoretical question: If a brain could only
see simple edges, how much would it see?

To sample a few applications, our computational brain could tell:

1. Whether a photograph is taken indoors or outdoors (Guérin-
Dugué & Oliva, 2000)

2. Whether the material is glossy, matte or textured
3. Whether a painting is a forgery, by recognizing individual artist

brushstrokes.

Moreover, a computer brain can also do something that a real brain
cannot; it can analyze a three-dimensional signal, a video. You can think
of video frames as slices perpendicular to time in a three-dimensional
space-time volume. A computer interprets moving bright and dark
patches in the time-space volume as edges in three dimensions.

Using this technique, MIT researchers discovered and amplified
imperceptible motions and color changes captured by a video camera,
making them visible to a human observer. The so-called motion
microscope reveals changes as subtle as face color changing with
heartbeat, a baby's breath, and a crane swaying in the wind.Probably the
most striking demonstration presented at ICPO 2015 last month showed
a pipe vibrating into different shapes when struck by a hammer. Visit the
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project webpage for demo and technical details.

So, how far are computer scientists from modeling the brain? In 1950,
early AI researchers expected computing technology to pass the Turing
test by 2000. Today, computers are still used as tools for solving
technically specific problems; a computer program can behave like a
human only to the extent that human behavior is understood. The
motivation for computer models based on biology, however, is twofold.

First, both computer scientists and computer users alike are much more
likely to see the output of a computer program as valid if its decisions
are based on biologically plausible steps. A computer AI recognizing
objects using the same rules as humans will likely see the same
categories and come to the same conclusions. Second, computer
applications are a test bed for neuroscience hypotheses. Moreover, a
computer implementation can tell us not only if a particular theoretical
model is feasible, it may also, unexpectedly, reveal alternative ways in
which evolution could work.

Answer to image one riddle:

A rabbit

  More information: "Unsupervised Neural Network Quantifies the
Cost of Visual Information Processing." PLoS ONE 10(7): e0132218. 
DOI: 10.1371/journal.pone.0132218 

"Stochastic Process Underlying Emergent Recognition of Visual Objects
Hidden in Degraded Images." PLoS ONE 9(12): e115658. DOI:
10.1371/journal.pone.0115658

This story is republished courtesy of PLOS Blogs: blogs.plos.org.
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