End-Permian mass extinction may have been driven by an ocean teeming with life

August 7, 2015 by Christopher Packham, Phys.org report

Stratigraphy and geography. Credit: PNAS 2015 ; published ahead of print August 3, 2015, doi:10.1073/pnas.1503755112
(Phys.org)—The Permian geologic period that ended the Paleozoic era climaxed around 252 million years ago with a sweeping global mass extinction event in which 90 to 95 percent of marine life became extinct. It would take 30 million years for planetary biodiversity to recover. Understanding the contributing factors of the end-Permian mass extinction is critical to understanding and perhaps mitigating the current anthropogenic climate change.

Scientists have speculated that during the Permian period, venting of oceanic hydrogen sulfide gas killed off most eukaryotes and allowed oceanic prokaryotes to flourish. An international collaborative of researchers has conducted an analysis of the chemistry embedded in oceanic , providing new geochemical evidence for this theory. The study, published in the Proceedings of the National Academy of Sciences, links the end-Permian with , geologic weathering, and widespread marine anoxia as a result of biogeochemical sulfur and carbon cycles.

The reduction of sulfates in the ocean by microbes is an important pillar of the sulfur cycle. Most of the hydrogen sulfide in the ocean is reoxidized, with a fraction buried in sediment. Release from the sediment is another important factor, affecting sulfide formation and reactive iron availability. A notable increase in hydrogen sulfide would have affected the oceanic environment in a host of complex ways, creating major changes in biodiversity.

The current study demonstrates successive enhanced organic matter degradation by microbial sulfate reduction. This produces , which is toxic for most eukaryotes, killing them by interfering with mitochondrial energy production. Rather than a so-called "Strangelove" ocean in which all life dies off, the study proposes a huge reduction of species richness—a decline in marine biodiversity of around 80 percent.

Carbonate-associated sulfate isotope data compiled by the researchers demonstrates that widespread euxenic zones resulted in sulfide toxicity, driving the loss during this period. Under low competition pressure, prokaryotic life rapidly occupied the resulting vacant ecospaces. It's a remarkable portrait of biological productivity that contradicts the idea of an entirely dead ocean.

The researchers note that this scenario also reinforces the idea that life forms influence seawater chemistry. The authors write, "This study also emphasizes that, besides the property of organisms to construct a habitable planet, they can also act as a catalyst for destruction," noting that would have been quite different with the flourishing of prokaryotes.

Geologic data from the Early Triassic that followed records increased sequestration of sulfur sourced from pyrite owing to the lack of eukaryotic organisms that would have irrigated oceanic sediments with O2 via burrowing. These and other processes generated a negative feedback loop of the carbon cycle in which enhanced production and sequestration of organic carbon was stimulated by global warming and rates of chemical weathering. "The prolonged disturbance after the end-Permian mass extinction contradicts a fast return (<100 ky) to predisturbance climate and carbon cycle," the authors note.

The authors conclude that post-extinction marine prokaryote domination, particularly the sulfate-reducing microbes, might have exerted enormous influence on the in the Early Triassic, affecting marine conditions and global climate, preventing the planet's recovery for a long period of time.

Explore further: An isotopic analysis of two mass extinction events

More information: "Flourishing ocean drives the end-Permian marine mass extinction." PNAS 2015 ; published ahead of print August 3, 2015, DOI: 10.1073/pnas.1503755112

The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian−Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.

Related Stories

Mass extinction event from South Africa's Karoo

July 7, 2015

An international team led by researchers from the Evolutionary Studies Institute (ESI) at the University of the Witwatersrand, Johannesburg, has obtained an age from rocks of the Great Karoo that shed light on the timing ...

New technique unlocks secrets of ancient ocean

October 11, 2011

Earth's largest mass extinction event, the end-Permian mass extinction, occurred some 252 million years ago. An estimated 90 percent of Earth's marine life was eradicated. To better understand the cause of this "mother of ...

Recommended for you

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (7) Aug 07, 2015
So essentially early "slime ball Earth" returned, with prokaryotes at the helm.

I'm not sure I understand the model from the abstract, so need to read the paper, but even with complexity and unnecessarily opaque language it looks superficially good. (Good measurements it seems, and due diligence modeling.)

If so, this phase of restructuring complex multicellular ecology to suppress unicellular niches may be something most worlds evolving the former life will endure. Mass extinctions are survivable, we have survived many, but this seems to be both pesky and potentially common.
2.1 / 5 (7) Aug 07, 2015
Can we stop our own current mass extinction?
1.4 / 5 (9) Aug 07, 2015
Hopefully not. I only see three answers to the challenge. Denial, hypocrisy and "not my problem". Meanwhile none care about the human monoculture that would be a mass extinction even without climate change.

So, a pox on everyone's house. Let's hope it's quick and mainly wipes out homo mutans.
2.3 / 5 (6) Aug 07, 2015
You first.
1 / 5 (4) Aug 07, 2015
" It would take 30 million years for planetary biodiversity to recover."

For this period is posible from remaining 5 % of species as is said in this article to emerge 100 % . 19 fold increasing of bio diversity? What a remarkable story!
1 / 5 (7) Aug 07, 2015
"Can we stop our own current mass extinction?"

This is impasible if we as society bet on human traditions and not stick to God's laws and principles.
3.8 / 5 (10) Aug 07, 2015
"God's laws and principles"

Do I get to pick the god?
1 / 5 (6) Aug 07, 2015
Humble to elevate yourself. Ego brings its tragic mark on the human history and many people not taking lesson from it.
not rated yet Aug 07, 2015
"God's laws and principles"

Do I get to pick the god?

Give us another couple hundred years of progress and we may get to join the club.
2.3 / 5 (3) Aug 09, 2015
P Ward and J Kirschvink A New History of Life
Theologians and Philosophers have debated endlessly why our ability to think.
Myself, I believe it is just an accident. We survived deadly gases and radiation and then when the dangers lessened, the excess protein were directed to our brains. Then conversely, the more toxins we expose ourselves to needless (just for profit) it follows we are dumbing ourselves down. Flowers for Algernon.
It is not that life is rare; it is that it is rarely long.
3 / 5 (2) Aug 20, 2015
Anthropogenic climate change? If you piss in your well long enough, eventually, your water will taste like pee...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.