Curiosity snaps belly selfie at Buckskin Mountain base drill site

August 21, 2015 by Ken Kremer, Universe Today
This low-angle self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called “Buckskin.” The MAHLI camera on Curiosity’s robotic arm took multiple images on Aug. 5, 2015, that were stitched together into this selfie. Credit: NASA/JPL-Caltech/MSSS

NASA's Curiosity rover has snapped a stunningly beautiful, one of a kind 'belly selfie' amidst the painstaking 'Buckskin' drill campaign at the Martian mountain base marking the third anniversary since her touchdown on the Red Planet.

The unique was taken from a low-angle for the first time and shows the six wheeled at work collecting her seventh drilled sample at the 'Buckskin' rock target earlier this month in the "Marias Pass" area of lower Mount Sharp.

'Buckskin' is also unique in a fabulously scientifically way because the rover discovered a new type of Martian rock that's surprisingly rich in silica – and unlike any other targets found before.

The low camera angle is what enables the awesome Buckskin belly selfie. It's a distinctively dramatic view and actually stitched from 92 images captured by the Mars Hand Lens Imager (MAHLI) on Aug. 5, 2015, or Sol 1065 of the mission.

The high resolution MAHLI color camera is located on the end of the 7 foot-long (2.1 meter-long) .

Indeed the car-sized rover has taken spectacular selfies several times before during her three year long trek across the Martian surface, since the August 2012 landing inside Mars' Gale Crater. But for those past selfies the MAHLI camera was hoisted higher to give the perspective of looking somewhat downward and showing the rovers top deck and trio of sample inlet ports.

In this case, the rover team specifically commanded Curiosity to position "the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity," said NASA officials.

Two patches of gray colored powdered rock material drilled from Buckskin are visible in the selfie scene, in front of the rover.

This version of a self-portrait of NASA’s Curiosity Mars rover at a drilling site called “Buckskin” is presented as a stereographic projection, which shows the horizon as a circle. The MAHLI camera on Curiosity’s robotic arm took dozens of component images for this selfie on Aug. 5, 2015. Credit: NASA/JPL-Caltech/MSSS

"The patch closer to the rover is where the sample-handling mechanism on Curiosity's robotic arm dumped collected material that did not pass through a sieve in the mechanism. Sieved sample material was delivered to laboratory instruments inside the rover. The patch farther in front of the rover, roughly triangular in shape, shows where fresh tailings spread downhill from the drilling process."

Prior selfies were taken at the "Rocknest" (photojournal.jpl.nasa.gov/catalog/PIA16468), "John Klein" (photojournal.jpl.nasa.gov/catalog/PIA16937), "Windjana" (photojournal.jpl.nasa.gov/catalog/PIA18390) and "Mojave" drill sites.

Basically in the Sol 1065 belly selfie at "Buckskin" we see the underbelly of the rover and all six wheels along with a complete self portrait.

On several prior occasions, MAHLI was used to image just the underbelly and wheels to aid in inspecting the wheels to look for signs of damage inflicted by sharp-edged Martian rocks poking holes in the aluminum wheels.

Curiosity extends robotic arm and conducts sample drilling at “Buckskin” rock target at bright toned “Lion” outcrop at the base of Mount Sharp on Mars, seen at right. Gale Crater eroded rim seen in the distant background at left, in this composite multisol mosaic of navcam raw images taken to Sol 1059, July 30, 2015. Navcam camera raw images stitched and colorized. Inset: MAHLI color camera up close image of full depth drill hole at “Buckskin” rock target on Sol 1060. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Each wheel measures 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. And the MAHLI monitoring images have shown the effects of increasing wear and tear that ultimately forced the rover drivers to alter Curiosity's driving route on the crater floor in favor of smoother and less rocky terrain imparting less damage to the critical wheels.

If you take a close look at the new selfie up top, you'll see a small rock stuck onto Curiosity's left middle wheel (on the right in this head-on view). The rock was seen also in prior wheel monitoring images taken three weeks ago.

"The selfie at Buckskin does not include the rover's robotic arm beyond a portion of the upper arm held nearly vertical from the shoulder joint. With the wrist motions and turret rotations used in pointing the camera for the component images, the arm was positioned out of the shot in the frames or portions of frames used in this mosaic," according to officials.

This version of a self-portrait of NASA’s Curiosity Mars rover at a drilling site called “Buckskin” is presented as a stereographic projection, which shows the horizon as a circle. The MAHLI camera on Curiosity’s robotic arm took dozens of component images for this selfie on Aug. 5, 2015. Credit: NASA/JPL-Caltech/MSSS

The drilling campaign into "Buckskin" was successfully conducted on Sol 1060 (July 30, 2015) at the bright toned "Lion" outcrop to a full depth of about 2.6 inches (6.5 centimeters) and approximately 1.6 cm (0.63 inch) diameter.

You can also see another perspective of the rover at work while reaching out with the robotic arm and drilling into 'Buckskin' as illustrated in our mosaics of mastcam and navcam camera raw images created by the image processing team of Ken Kremer and Marco Di Lorenzo.

The main bore hole was drilled next to the initial mini hole test and shows the indicative residue of grey colored tailings from the Martian subsurface seen distributed around the new hole.

Curiosity has now moved on from the "Marias Pass" area.

Underbelly view of Curiosity rover and wheels on Sol 34, Sept. 9, 2012. Credit: NASA/JPL/MSSS/Ken Kremer/Marco Di Lorenzo

Curiosity recently celebrated 1000 Sols of exploration on Mars on May 31, 2015 – detailed here with our Sol 1000 mosaic also featured at Astronomy Picture of the Day on June 13, 2015.

As of today, Sol 1080, August 20, 2015, she has driven some 6.9 miles (11.1 kilometers) kilometers and taken over 260,000 amazing images.

Curiosity has already accomplished her primary objective of discovering a habitable zone on the Red Planet – at the Yellowknife Bay area – that contains the minerals necessary to support microbial life in the ancient past when Mars was far wetter and warmer billions of years ago.

Curiosity rover successfully drills into Martian outcrop at Buckskin rock target at current work site at base of Mount Sharp in August 2015, in this mosaic showing full depth drill hole and initial test hole, with grey colored subsurface tailings and mineral veins on surrounding Red Planet terrain. This high resolution photo mosaic is a multisol composite of color images taken by the mast mounted Mastcam-100 color camera up to Sol 1060, July 31, 2015. Credit: NASA/JPL-Caltech/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Curiosity rover scans toward south east around Marias Pass area at the base of Mount Sharp on Mars on Sol 1074, Aug. 14, 2015 in this photo mosaic stitched from Mastcam color camera raw images. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Explore further: Curiosity discovers Mars rock like none before, sets drill campaign

Related Stories

NASA image: Curiosity's stars and stripes

July 3, 2015

This view of the American flag medallion on NASA's Mars rover Curiosity was taken by the rover's Mars Hand Lens Imager (MAHLI) during the 44th Martian day, or sol, of Curiosity's work on Mars (Sept. 19, 2012). The flag is ...

Curiosity self-portrait, wide view

December 27, 2012

(Phys.org)—On the 84th and 85th Martian days of the NASA Mars rover Curiosity's mission on Mars (Oct. 31 and Nov. 1, 2012), NASA's Curiosity rover used the Mars Hand Lens Imager (MAHLI) to capture dozens of high-resolution ...

Mars rover self-portrait shoot uses arm choreography

December 12, 2012

(Phys.org)—The robotic arm on NASA's Mars rover Curiosity held the rover's Mars Hand Lens Imager (MAHLI) camera in more than 50 positions in one day to generate a single scene combining all the images, creating a high-resolution, ...

First color image of Mars returned from Curiosity

August 7, 2012

(Phys.org) -- This view of the landscape to the north of NASA's Mars rover Curiosity was acquired by the Mars Hand Lens Imager (MAHLI) on the afternoon of the first day after landing. (The team calls this day Sol 1, which ...

NASA's Curiosity rover inspects unusual bedrock

July 24, 2015

Approaching the third anniversary of its landing on Mars, NASA's Curiosity Mars rover has found a target unlike anything it has studied before—bedrock with surprisingly high levels of silica. Silica is a rock-forming compound ...

Recommended for you

New eruptions detected in two luminous blue variables

December 12, 2017

(Phys.org)—Astronomers report the detection of new eruptions in two luminous blue variables, known as R 40 and R 110, located in the Magellanic Clouds. The finding, presented December 5 in a paper published on the arXiv ...

Juno probes the depths of Jupiter's great red spot

December 12, 2017

Data collected by NASA's Juno spacecraft during its first pass over Jupiter's Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. Other revelations from the mission include that ...

Telescopes team up to study giant galaxy

December 12, 2017

Astronomers have used two Australian radio telescopes and several optical telescopes to study complex mechanisms that are fuelling jets of material blasting away from a black hole 55 million times more massive than the Sun.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.