World record: Most powerful high-energy particle beam for a neutrino experiment ever generated

July 8, 2015, Fermi National Accelerator Laboratory
Fermilab's Main Injector accelerator, one of the most powerful particle accelerators in the world, has just achieved a world record for high-energy beams for neutrino experiments. Credit: Fermilab

A key element in a particle-accelerator-based neutrino experiment is the power of the beam that gives birth to neutrinos: The more particles you can pack into that beam, the better your chance to see neutrinos interact in your detector. Today scientists announced that Fermilab has set a world record for the most powerful high-energy particle beam for neutrino experiments.

Scientists, engineers and technicians at the U.S. Department of Energy's Fermi National Accelerator Laboratory have achieved for high-energy neutrino experiments a world record: a sustained 521-kilowatt beam generated by the Main Injector particle accelerator. More than 1,000 physicists from around the world will use this high-intensity beam to more closely study neutrinos and fleeting particles called muons, both fundamental building blocks of our universe.

The record beam power surpasses that of the 400-plus-kilowatt beam sent to neutrino experiments from particle accelerators at CERN.

Setting this world record is an initial step for the Fermilab accelerator complex as it will gradually increase beam power over the coming years. The next goal for the laboratory's two-mile-around Main Injector accelerator—the final and most powerful in Fermilab's accelerator chain—is to deliver 700-kilowatt beams to the laboratory's various experiments. Ultimately, Fermilab plans to make additional upgrades to its accelerator complex over the next decade, achieving beam power in excess of 1,000 kilowatts, also referred to as 1 megawatt.

"We have the world's highest-power beam for neutrinos, and we're only going up from here," said Ioanis Kourbanis, head of the Main Injector Department at Fermilab.

Laboratory-made neutrino experiments start by accelerating a beam of particles, typically protons, and then smashing them into a target to create neutrinos. Scientists then use particle detectors to "catch" as many of those neutrinos as possible and record their interactions. Neutrinos rarely engage with matter: Only one out of every trillion emerging from the proton beam will interact in an experiment's detector. The more particles in that beam, the more opportunities researchers will have to study these rare interactions.

The amped-up particle beam provided by the Main Injector enriches the lab's neutrino supply, positioning Fermilab to become the primary laboratory for accelerator-based neutrino research. Neutrinos are also made in stars and in the Earth's core, and they pass through everything—people and planets alike.

"The idea is that if you build a more intense beam, neutrino scientists from around the world will beat a path to your door," said Fermilab Deputy Director Joe Lykken. "This is exactly what's happening."

Fermilab currently operates four neutrino experiments: MicroBooNE, MINERvA, MINOS+ and the laboratory's largest-to-date , NOvA, which sends particles from Fermilab's suburban Chicago location to a far detector 500 miles away in Ash River, Minnesota. The laboratory is working with scientists from around the world on expanding its short-baseline neutrino program and would also serve as host to the proposed flagship Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment, or DUNE. Scientists aim to address basic questions about the mass and properties of each kind of neutrino as well as the role played in the evolution of the universe.

"Reaching this milestone is a fantastic achievement for Fermilab; beam power is everything in our field," said DUNE co-spokesperson Mark Thomson of the University of Cambridge. "The ability for Fermilab to deliver, yet again, gives the international neutrino community huge confidence in the future U.S.-hosted neutrino program."

Fermilab is also preparing to operate two experiments for studying muons, short-lived particles that could reveal secrets about the earliest moments of the universe. The increased will also benefit the Fermilab Test Beam Facility, one of the few facilities in the world that provides muons, pions and other particles that researchers can use to test their particle detectors.

Since 2011, Fermilab has made significant upgrades to its accelerators and reconfigured the complex to provide the best possible particle beams for neutrino and muon experiments. With the dedicated work of the Fermilab Accelerator Division, the Main Injector is on track to nearly double its Tevatron-era power by 2016.

"Fermilab's beamline has been a tremendous driver of neutrino science for many years, and the continued improvements to the intensity mean that it will remain a driver for many years to come," said Indiana University's Mark Messier, co-spokesperson for the NOvA experiment.

Explore further: Fermilab sends first neutrino beam to NOvA experiment

Related Stories

Fermilab sends first neutrino beam to NOvA experiment

September 17, 2013

DOE's Fermilab has switched on its newly upgraded neutrino beam, soon to be the most intense in the world. The laboratory spent the past 15 months upgrading its accelerator complex in preparation for the NOvA experiment, ...

ICARUS neutrino experiment to move to Fermilab

April 23, 2015

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean from CERN to its new home at the US Department of Energy's Fermi National ...

OPERA detects its fifth tau neutrino

June 16, 2015

The OPERA (Oscillation Project with Emulsion-tRacking Apparatus) experiment at the Italian National Institute for Nuclear Physics (INFN) at Gran Sasso in Italy has detected the fifth occurrence of a tau neutrino in the muon-neutrino ...

Fermilab's 500-mile neutrino experiment up and running

October 6, 2014

(Phys.org) —It's the most powerful accelerator-based neutrino experiment ever built in the United States, and the longest-distance one in the world. It's called NOvA, and after nearly five years of construction, scientists ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

richard_f_cronin
1 / 5 (1) Jul 09, 2015
Now, why did we spend billions of dollars on a white elephant called CERN ?
docile
Jul 09, 2015
This comment has been removed by a moderator.
Hyperfuzzy
not rated yet Jul 09, 2015
You do know what a neutrino is? We are looking for what, exactly?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.